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Abstract
In our previous work, we introduced three different ways to associate Lie algebras to isolated
hypersurface singularities. In this paper, we analyze their relations in the case of weighted
homogeneous singularities. Moreover, explicit formulas of the dimensions of three series
of Lie algebras are given for fewnomial singularities. Several conjectures are proposed and
verified partially.
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1 Introduction

Many highly non-trivial physical questions such as the Coulomb branch spectrum and the
Seiberg–Witten solution [11, 12, 29, 35, 36] can be easily found by studying the mini-
versal deformation of the singularity. The second and third authors classify three dimensional
isolated weighted homogeneous rational complete intersection singularities, which define
many new four dimensional N = 2 superconformal field theories [10]. In this article, we
will study new invariants introduced in our previous works [19]-[28]. These new invariants
are very useful in the classification theory of singularities. For any isolated hypersurface
singularity (V , 0) ⊂ (Cn, 0) where V = V ( f ) = { f = 0}, in the early 80s, the second
author introduced the Lie algebra of derivations of moduli algebra A(V ) := On/( f , J ( f ))
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where J ( f ) := (
∂ f
∂x1

, · · · ,
∂ f
∂xn

), i.e., L(V ) := Der(A(V ), A(V )). It is known that L(V )

is a finite dimensional solvable Lie algebra [40, 42]. L(V ) is called the Yau algebra of V
(its dimension λ(V ) is called Yau number) in [43] and [15] in order to distinguish from Lie
algebras of other types appearing in singularity theory [30]. Yau and his collaborators have
been systematically studying the Lie algebras of isolated hypersurface singularities since
early eighties (see, e.g., [40]-[42], [3, 8, 32, 37, 44, 45]).

In the last thirty years, the Lie algebra of derivations have become a very important tool in
singularity theory and Lie theory ([6–9, 13, 15, 37, 39]). In the theory of isolated singularities,
one alwayswants to find invariants associated to isolated singularities. Hopefullywith enough
invariants found, one can distinguish between isolated singularities. However, not many
invariants are known. In recent years, we have introduced many derivations Lie algebras
which are new invariants of isolated singularities. Three different ways to associate Lie
algebras to isolated hypersurface singularities were introduced in [9, 20, 21, 26, 33].

Firstly, a new series of derivation Lie algebras Lk(V ), 0 ≤ k ≤ n associated to the
isolated hypersurface singularity (V , 0) defined by the holomorphic function f (x1, · · · , xn)
was introduced in [26]. Let Hess( f ) be the Hessian matrix ( fi j ) of the second order partial
derivatives of f and h( f ) be the determinant of thematrix Hess( f ). More generally, for each
k satisfying 0 ≤ k ≤ n, we denote by hk( f ) the ideal inOn generated by all k × k-minors in
the matrix Hess( f ). In particular, h0( f ) = 0, the ideal hn( f ) = (h( f )) is a principal ideal.
For each k as above, the graded k-th Hessian algebra of the polynomial f is defined by

Hk(V ) = On/( f + J ( f ) + hk( f )).

The dimension of Hk(V ) as a C-vector space is denoted as hk(V ).
It is known that the isomorphism class of the local k-th Hessian algebra Hk( f ) is contact

invariant of f , i.e. depends only on the isomorphism class of the germ (V , 0) ([14], Lemma
2.1). In [26], we investigated the new Lie algebra Lk(V ) which is the Lie algebra of deriva-
tions of k-th Hessian algebra Hk( f ). The dimension of Lk(V ), denoted by λk(V ), is a new
numerical analytic invariant of an isolated hypersurface singularity.

In particular, when k = 0, those are exactly the previous Yau algebra and Yau number,
i.e., L0(V ) = L(V ), λ0(V ) = λ(V ). Thus, the Lk(V ) is a generalization of Yau algebra
L(V ). Moreover, Ln(V ) has been investigated intensively and many interesting results were
obtained. In [9], it was shown that Ln(V ) completely distinguish ADE singularities. Further-
more, the authors have proven Torelli-type theorems for some simple elliptic singularities.
Therefore, this new Lie algebra Ln(V ) is a subtle invariant of isolated hypersurface singu-
larities. It is a natural question whether we can distinguish singularities by only using part
of the information of Ln(V ). In [22], we studied generalized Cartan matrices of the new
Lie algebra Ln(V ) for simple hypersurface singularities and simple elliptic singularities.
We introduced many other numerical invariants, namely, the dimension of the a maximal
nilpotent subalgebras (i.e., nilradical of nilpotent Lie algebra) g(V ) of Ln(V ); dimension of
maximal torus of g(V ), etc. We have proven that the generalized Cartan matrix of Ln(V )

can be used to characterize the ADE singularities except the pair of A6 and D5 singularities
[22].

Secondly, let (V , 0) be an isolated hypersurface singularity defined by a holomorphic
function f : (Cn, 0) → (C, 0). The multiplicity mult( f ) of the singularity (V , 0) is defined
to be the order of the lowest nonvanishing term in the power series expansion of f at 0.

Definition 1.1 Let (V , 0) = {(x1, . . . , xn) ∈ C
n f (x1, . . . , xn) = 0} be an isolated hyper-

surface singularity with mult( f ) = m. Let Jk( f ) be the ideal generated by all the k-th order

partial derivative of f , i.e., Jk( f ) =<
∂k f

∂zi1 ...∂zik
| 1 ≤ i1, . . . , ik ≤ n >. For 1 ≤ k ≤ m, we
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define the new k-th local algebra, Mk(V ) := On/( f + J1( f ) + · · · + Jk( f )). In particular,
Mm = 0. The dimension of Mk(V ) as a C-vector space is denoted as dk(V ). In particular
dm(V ) = 0.

Recall that a polynomial f ∈ C[x1, · · · , xn] is said to be the weighted homogeneous
if there exist positive rational numbers w1, · · · , wn (weights of x1, · · · , xn) and d such
that,

∑
aiwi = d for each monomial

∏
xaii appearing in f with non-zero coefficient. The

number d is called weighted homogeneous degree (w-degree) of f with respect to weights
w j . The weight type of f is denoted as (w1, · · · , wn; d). Without loss of generality, we can
assume that w-deg f = 1. An isolated hypersurface singularity (V , 0) is called weighted
homogeneous if it is defined by a weighted homogeneous polynomial f .

Remark 1.1 If f defines a weighted homogeneous isolated singularity at the origin, then
f ∈ J1( f ) ⊂ J2( f ) ⊂ · · · ⊂ Jk( f ), thus Mk(V ) = On+1/( f + J1( f ) + · · · + Jk( f )) =
On+1/(Jk( f )).

The isomorphism class of the k-th local algebra Mk(V ) is a contact invariant of (V , 0),
i.e. depends only on the isomorphism class of the germ (V , 0). The dimension of Mk(V )

is denoted by dk(V ) which is a numerical analytic invariant of an isolated hypersurface
singularity.

Theorem 1.1 [33] Suppose (V , 0) = {(x1, · · · , xn) ∈ C
n f (x1, · · · , xn) = 0} and (W , 0) =

{(x1, · · · , xn) ∈ C
n g(x1, · · · , xn) = 0} are isolated hypersurface singularities. If (V , 0) is

biholomorphically equivalent to (W , 0), then Mk(V ) is isomorphic to Mk(W ) as aC-algebra
for all 1 ≤ k ≤ m, where m = mult( f ) = mult(g).

Based on Theorem 1.1, it is natural for us to introduce the new series of k-th derivation
Lie algebras Lk(V ) (or Lk((V , 0))) which are defined to be the Lie algebra of derivations of
the k-th local algebra Mk(V ), i.e., Lk(V ) = Der(Mk(V ), Mk(V )). Its dimension is denoted
as δk(V ) (or δk((V , 0))). This number δk(V ) is also a new numerical analytic invariant.

Finally, recall that the Mather-Yau theorem was slightly generalized.

Theorem 1.2 ([17], Theorem 2.26) Let f , g ∈ m ⊂ On. The following are equivalent:
1) (V ( f ), 0) ∼= (V (g), 0);
2) For all k ≥ 0, On/( f ,mk J ( f )) ∼= On/(g,mk J (g)) as C-algebra;
3) There is some k ≥ 0 such that On/( f ,mk J ( f )) ∼= On/(g,mk J (g)) as C-algebra,
where J ( f ) = (

∂ f
∂x1

, · · · ,
∂ f
∂xn

).

In particular, if k = 0 and k = 1 above, then the claim of the equivalence of 1) and 3) is
exactly the Mather–Yau theorem [31].

Motivated from Theorem 1.2, in [20, 21], we introduced the new series of k-th Yau
algebras Lk(V ) (or Lk((V , 0))) which are defined to be the Lie algebra of derivations of
the moduli algebra T k(V ) = On/( f ,mk J ( f )), k ≥ 0, where m is the maximal ideal, i.e.,
Lk(V ) := Der(T k(V ), T k(V )). Its dimension is denoted as λk(V ) (or λk((V , 0))). This
series of integers λk(V ) are new numerical analytic invariants of singularities. It is natural
to call it k-th Yau number. In particular, when k = 0, those are exactly the previous Yau
algebra and Yau number, i.e., L0(V ) = L(V ), λ0(V ) = λ(V ). In [40], Yau observed that
the Yau algebra for the one-parameter family of simple elliptic singularities Ẽ6 is constant.
It turns out that the 1-st Yau algebra L1(V ) is also constant for the family of simple elliptic
singularities Ẽ6. However, Torelli-type theorem for Lk(V ) for all k > 1 do hold on Ẽ6 ([18]).
In general, the invariant Lk(V ), k ≥ 1 are more subtle than the Yau algebra L(V ). In a word,
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we have reasons to believe that these three series of new Lie algebras and their numerical
invariants will also play an important role in the study of singularities.

Two naturally interesting questions are: what are the relations between these invariants of
an isolated hypersurface singularities (V , 0) above? Whether one can give a sharp bound for
these invariants? We proposed the following conjectures.

Conjecture 1.1 Recall that dk(V ) is the dimension of the Artinian algebra Mk(V ). For
each k ≥ 1, assume that dk({xa11 + · · · + xann = 0}) = �k(a1, · · · , an). Let (V , 0) =
{(x1, x2, · · · , xn) ∈ C

n : f (x1, x2, · · · , xn) = 0}, (n ≥ 2) be an isolated singular-
ity defined by the weighted homogeneous polynomial f (x1, x2, · · · , xn) of weight type
(w1, w2, · · · , wn; 1). Then dk(V ) ≤ �k(1/w1, · · · , 1/wn).

Proposition 1.1 Let (V , 0) be an isolated hypersurface singularity defined by f ∈ On, n ≥
2, m = mult( f ). And let dk(V ), hk(V ), τ k(V ) be the dimension of the Artinian algebras
Mk(V ), Hk(V ), T k(V ) respectively. For each k ≥ 0, then · · · > τ(k+1)(V ) > τ k(V ) · · · >

τ 0(V ) = d1(V ) = h0(V ) = hn(V ) − 1 > hn−1(V ) > · · · > h1(V ) = d2(V ) > d3(V ) >

· · · > dm(V ).

Remark 1.2 The Proposition 1.1 follows easily from the definitions of τ k(V ), dk(V ) and
hk(V ). However, the following Conjecture 1.2 is highly nontrivial.

Conjecture 1.2 With the above notations, let (V , 0) be an isolated hypersurface singularity
defined by f ∈ On, n ≥ 2. For each k ≥ 0, then · · · > λ(k+1)(V ) > λk(V ) · · · > λ0(V ) =
δ1(V ) = λ0(V ) = λn(V ) > λn−1(V ) > · · · > λ1(V ) = δ2(V ) > δ3(V ) > · · · >

δm−1(V ), where m = mult( f ).

The k-th Milnor number and k-th Tjurina number are defined as follows.

μk := dimOn/(m
k J ( f )), τ k := dimOn/( f ,m

k J ( f )).

It is obvious that μk ≥ τ k , thus μk

τ k
≥ 1. In particular, when k = 0, μ0 and τ 0 are the

classical Milnor number μ and Tjurina number τ respectively. Moreover, Saito showed [34]
that μ

τ
= 1, if and only if, that f defines a weighted homogeneous isolated singularity.

However, even for weighted homogeneous isolated singularity, μk

τ k
�= 1, k ≥ 2. We give the

following interesting example.

Example 1.1 Let (V , 0) be an isolated hypersurface singularity defined by

f = xm1 + xm2 + xm3 + xm+1
1 xm+1

2 xm+1
3 ,m ≥ 2.

Then

τ 0(V ) = μ0(V ) = m3 − 3m2 + 3m − 1,

τ 1(V ) = μ1(V ) = m3 − 3m2 + 3m + 2,

τ 2(V ) =
{
m3 − 3m2 + 3m + 10; m ≥ 3
9; m = 2,

μ2(V ) =
{
m3 − 3m2 + 3m + 12; m ≥ 3
10; m = 2.

It is interesting to note that μk = τ k for k = 0, 1, however, μ2 �= τ 2.

The following new result gives an upper bound of μk

τ k
.
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Theorem 1.3 Assume that f : (Cn, 0) → (C, 0) is a holomorphic function germ at the origin
with only isolated singularity. Then, for each k ≥ 0, we have

τ k ≤ μk ≤ nτ k +
(
n + k − 1

k − 1

)

.

Proof We only need to show that μk ≤ nτ k +
(
n + k − 1

k − 1

)

. We consider the following long

exact sequence of C-algebras:

0 → Ker( f ) → Mk
f

f→ Mk
f → T k

f → 0,

where Mk
f = On/m

k J ( f ), T k
f = On/( f ,mk J ( f )), the middle map is multiplication by f ,

and Ker( f ) is the kernel of this map.
Recall a well-known result given by Briançon and Skoda in [5] that f n ∈ J ( f ), so

( f n)mk = 0 in Mk
f , i.e., ( f

n−1)mk ⊂ Ker( f ). Thus we have the following finite decreasing
filtration:

Mk
f ⊃ ( f ) ⊃ ( f )mk ⊃ ( f 2)mk ⊃ · · · ⊃ ( f n−1)mk ⊃ ( f n)mk = 0,

where ( f i ) is the ideal in Mk
f generated by f i .

Consider the following long exact sequence:

0 → Ker( f ) ∩ ( f i )mk → ( f i )mk f→ ( f i )mk → ( f i )mk/( f i+1)mk → 0,

where the middle map is multiplication by f . Then,

dimC{( f i )mk/( f i+1)mk} = dimC{Ker( f ) ∩ ( f i )mk} ≤ dimCKer( f ) = τ k .

Therefore,

μk = dimCM
k
f = dimCT

k
f + dimC{( f )/( f )mk} +

n−1∑

i=1

dimC{( f i )mk/( f i+1)mk}

≤ nτ k + dimC{On/m
k} = nτ k +

(
n + k − 1

k − 1

)

.

��
Remark 1.3 Moreover, in Theorem 1.3, if (V ( f ), 0) is a weighted homogeneous singularity,
then

τ k ≤ μk ≤ nτ k +
(
n + k − 2

k − 2

)

.

The proof is similar as the proof of Theorem 1.3, the only step which we need to improve is

dimC{( f )/( f )mk} = dimC{ f ·On/( f ·mk,mk J ( f ))} ≤ dimC{On/m
k−1} =

(
n + k − 2

k − 2

)

which follows from the Euler equality for weighted homogeneous polynomial.

Theorem 1.3 tells us that, fixing n, k, the μk

τ k
is sufficiently close to the n if τ k is sufficiently

large. It seems that the upper bound n can never be achieved. We don’t have any example

whose μk

τ k
is sufficiently close to n. It is natural to ask what is the optimal upper bound of

μk

τ k
. We propose the following two conjectures.
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Conjecture 1.3 Let (V , 0) be an isolated hypersurface singularity defined by f (x1, x2). Then
for each k ≥ 0,

μk

τ k
<

4

3
.

We believe that the 4
3 in Conjecture 1.3 is optimal because of the following example: let

(V , 0) be an isolated hypersurface singularity defined by

f = x2m+1
1 + x2m+1

2 + xm+1
1 xm+1

2 ,m ≥ 1,

then we have

μ0(V ) = 4m2, μ1(V ) = 4m2 + 2,

τ 0(V ) = 4m2 − (m − 12), τ 1(V ) = 3m2 + 2m + 1,

μ2(V ) = 4m2 + 6,

τ 2(V ) =
{
3m2 + 2m + 5; m ≥ 2
9; m = 1.

Thus μ1

τ 1
and μ2

τ 2
are sufficiently close to 4

3 when m is sufficiently large.

Conjecture 1.4 Let (V , 0) be a isolated hypersurface singularity defined by f (x1, x2, x3).
Then for each k ≥ 0,

μk

τ k
<

3

2
.

We believe that the 3
2 in Conjecture 1.4 is optimal. The reason is that, when k = 0, there are

examples whose μ0

τ 0
is sufficiently close to 3

2 (see Example 3, [2]). When k > 0, we have the
following two examples:

1) Let (V , 0) be an isolated hypersurface singularity defined by

f = x3m+1
1 + x3m+1

2 + x3m+1
3 + xm+1

1 xm+1
2 xm+1

3 ,m ≥ 1,

then we have

μ0(V ) = 27m3,

τ 0(V ) =
{
19m3 + 9m2 + 6m − 11; m ≥ 2
26; m = 1,

μ1(V ) = 27m3 + 3,

τ 1(V ) =
{
19m3 + 9m2 + 6m − 8; m ≥ 2
29; m = 1,

μ2(V ) = 27m3 + 13,

τ 2(V ) =
{
19m3 + 9m2 + 6m + 2; m ≥ 2
38; m = 1.

2) Let (V , 0) be an isolated hypersurface singularity defined by

f = x3m−1
1 + x3m−1

2 + x3m−1
3 + xm1 xm2 xm3 ,m ≥ 1,
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then we have

μ0(V ) = 27m3 − 54m2 + 36m − 8,

τ 0(V ) =
{
19m3 − 33m2 + 24m − 12; m ≥ 2
1; m = 1,

μ1(V ) = 27m3 − 54m2 + 36m − 5

τ 1(V ) =
{
19m3 − 33m2 + 24m − 9; m ≥ 2
4; m = 1,

μ2(V ) =
{
27m3 − 54m2 + 36m + 5; m ≥ 2
10; m = 1.

τ 2(V ) =
{
19m3 − 33m2 + 24m + 1; m ≥ 2
9; m = 1.

In the above two examples, μk

τ k
, k = 0, 1, 2 are sufficiently close to 27

19 ≈ 1.42 < 3
2 when

m is sufficiently large. We currently don’t have an example such that μk

τ k
, k ≥ 1 sufficiently

close to 3
2 . It seems very hard to find such examples.

Remark 1.4 When k = 0, the conjecture 1.3 and conjecture 1.4 are verified in some cases in
[1, 38] and [2] respectively.

It is also interesting to give an optimal upper bound for the invariants δk(V ).

Conjecture 1.5 Let (V , 0) = {(x1, x2, . . . , xn) ∈ C
n : f (x1, x2, . . . , xn) = 0} (n ≥ 2) be

an isolated singularity defined by the weighted homogeneous polynomial f (x1, x2, . . . , xn)
of weight type (w1, w2, · · · , wn; 1). Then the generalized k-th Yau number

δk(V ) ≤ n
n∏

i=1

(
1

wi
− k

)

−
n∑

i

(
1

w1
− k

) (
1

w2
− k

)

· · ·
̂

(
1

wi
− k

)

· · ·
(

1

wn
− k

)

.

Themain purpose of this paper is to verify the Conjectures 1.1–1.5 for binomial and trinomial
singularities. We obtain the following results.

Theorem A Let (V , 0) be a weighted homogeneous fewnomial isolated singularity of type A
which is defined by f = xa11 + xa22 + · · · + xann (ai ≥ k + 2, 1 ≤ i ≤ n) with weight type
( 1
a1

, 1
a2

, · · · , 1
an

; 1). Then generalized k-th Yau number

δk(V ) = n
n∏

i=1

(ai − k) −
n∑

i

(a1 − k)(a2 − k) · · · ̂(ai − k) · · · (an − k),

where ̂(ai − k) means that ai − k is omitted and 1 ≤ k ≤ m − 1 and m = mult( f ).

Theorem B Let (V f , 0) ⊂ (Cn, 0) and (Vg, 0) ⊂ (Cm, 0) be defined by weighted homo-
geneous polynomials f (x1, x2, · · · , xn) = 0 of weight type (w1, w2 · · · , wn; 1) and
g(y1, y2, · · · , ym) = 0 of weight type (wn+1, wn+2, · · · , wn+m; 1) respectively. Let dk(V f )

and dk(Vg) be the dimensions of moduli algebras Mk(V f ) and Mk(Vg) of (V f , 0) and (Vg, 0)
respectively. Then

δk(V f +g) = dk(V f )δk(Vg) + dk(Vg)δk(V f ). (1.1)

and furthermore if both f and g satisfy the conjecture 1.5, then f + g also satisfies the
conjecture.
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Theorem C Let (V , 0) be a binomial singularity defined by the weighted homogeneous poly-
nomial f (x1, x2) (see Corollary 2.1) with weight type (w1, w2; 1). Then

dk(V ) ≤ �k

(
1

w1
,
1

w2

)

, k = 2, 3, 4.

Theorem D Let (V , 0) be a trinomial singularity defined by the weighted homogeneous poly-
nomial f (x1, x2, x3) (see Proposition 2.2) with weight type (w1, w2, w3; 1). Then

dk(V ) ≤ �k

(
1

w1
,
1

w2
,
1

w3

)

, k = 2, 3, 4.

Theorem E Let (V , 0) be a binomial singularity defined by the weighted homogeneous poly-
nomial f (x1, x2) (see Corollary 2.1). Then

μ2

τ 2
<

4

3
.

Theorem F Let (V , 0) be a trinomial singularity defined by the weighted homogeneous poly-
nomial f (x1, x2, x3) (see Proposition 2.2). Then

μ2

τ 2
<

3

2
.

Remark 1.5 In fact, it is easy to see μ0

τ 0
= μ1

τ 1
= 1 for weighted homogeneous singularities.

Theorem G Let (V , 0) be a binomial singularity defined by the weighted homogeneous poly-
nomial f (x1, x2) (see Corollary 2.1). Then

λ2(V ) > λ1(V ) > λ0(V ) = δ1(V ) = λ0(V ) = λ2(V ) > λ1(V ) = δ2(V ) > δ3(V ) >

δ4(V ).

Theorem H Let (V , 0) be a trinomial singularity defined by the weighted homogeneous poly-
nomial f (x1, x2, x3) (see Proposition 2.2). Then
λ2(V ) > λ1(V ) > λ0(V ) = δ1(V ) = λ0(V ) = λ3(V ) > λ1(V ) = δ2(V ) > δ3(V ) >

δ4(V ).

2 Generalities on derivation Lie algebras of isolated singularities

In this section, we shall briefly define the basic definitions and important results which are
helpful to solve the problem. The following basic concepts and results will be used to compute
the derivation Lie algebras of isolated hypersurface singularities. Let A, B be associative
algebras over C. The subalgebra of endomorphisms of A generated by the identity element
and left and right multiplications by elements of A is called multiplication algebra M(A)

of A. The centroid C(A) is defined as the set of endomorphisms of A which commute with
all elements of M(A). Obviously, C(A) is an unital subalgebra of End(A). The following
statement is a particular case of a general result from Proposition 1.2 of [4]. Let S = A ⊗ B
be a tensor product of finite dimensional associative algebras with units. Then

DerS ∼= (DerA) ⊗ C(B) + C(A) ⊗ (DerB).

Wewill only use this result for commutative associative algebras with unit, in which case the
centroid coincides with the algebra itself and one has the following result for commutative
associative algebras A, B:
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Theorem 2.1 ([4]) For commutative associative algebras A, B,

DerS ∼= (DerA) ⊗ B + A ⊗ (DerB). (2.1)

We shall use this formula in the sequel.

Definition 2.1 Let J be an ideal in an analytic algebra S. Then DerJ S ⊆ DerCS is Lie
subalgebra of all σ ∈ DerCS for which σ(J ) ⊂ J .

We shall use the following well-known result to compute the derivations.

Theorem 2.2 ([45]) Let J be an ideal in R = C{x1, · · · , xn}. Then there is a natural iso-
morphism of Lie algebras

(DerJ R)/(J · DerCR) ∼= DerC(R/J ).

Recall that a derivation of commutative associative algebra A is defined as a linear endo-
morphism D of A satisfying the Leibniz rule: D(ab) = D(a)b + aD(b). Thus for such an
algebra A one can consider the Lie algebra of its derivations Der(A, A) with the bracket
defined by the commutator of linear endomorphisms.

Definition 2.2 Let (V , 0) be an isolated hypersurface singularity. The new series of k-th
derivation Lie algebras Lk(V ) (or Lk((V , 0))) which are defined to be the Lie algebra of
derivations of the k-th local algebra Mk(V ), i.e.,Lk(V ) = Der(Mk(V ), Mk(V )). Its dimen-
sion is denoted as δk(V ) (or δk((V , 0))). This number δk(V ) is also a new numerical analytic
invariant.

Definition 2.3 A polynomial f ∈ C[x1, x2, · · · , xn] is called quasi-homogeneous (or
weighted homogeneous) if there exist positive rational numbers w1, . . . , wn (called weights

of indeterminates x j ) and d such that, for each monomial
∏

x
k j
j appearing in f with non-

zero coefficient, one has
∑

w j k j = d . The number d is called the quasi-homogeneous
degree (w-degree) of f with respect to weights w j and is denoted deg f . The collection
(w; d) = (w1, · · · , wn; d) is called the quasi-homogeneity type (qh-type) of f .

Definition 2.4 An isolated hypersurface singularity inC
n is fewnomial if it can be defined by

a n-nomial in n variables and it is a weighted homogeneous fewnomial isolated singularity
if it can be defined by a weighted homogeneous fewnomial. 3-nomial isolated hypersurface
singularity is also called trinomial singularity.

Proposition 2.1 Let f be a weighted homogeneous fewnomial isolated singularity with
mult( f ) ≥ 3. Then f analytically equivalent to a linear combination of the following three
series:

Type A. xa11 + xa22 + · · · + xan−1
n−1 + xann , n ≥ 1,

Type B. xa11 x2 + xa22 x3 + · · · + xan−1
n−1 xn + xann , n ≥ 2,

Type C. xa11 x2 + xa22 x3 + · · · + xan−1
n−1 xn + xann x1, n ≥ 2.

Proposition 2.1 has an immediate corollary.

Corollary 2.1 Each binomial isolated singularity is analytically equivalent to one from the
three series: A) xa11 + xa22 , B) xa11 x2 + xa22 , C) xa11 x2 + xa22 x1.

Wolfgang and Atsushi [16] give the following classification of weighted homogeneous
fewnomial singularities in case of the three variables.
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Proposition 2.2 Let f (x1, x2, x3) be aweighted homogeneous fewnomial isolated singularity
with mult( f ) ≥ 3. Then f is analytically equivalent to the following five types:

Type 1. xa11 + xa22 + xa33 ,
Type 2. xa11 x2 + xa22 x3 + xa33 ,
Type 3. xa11 x2 + xa22 x3 + xa33 x1,
Type 4. xa11 + xa22 + xa33 x1,
Type 5. xa11 x2 + xa22 x1 + xa33 .

3 Proof of theorems

To prove the main theorems we need following propositions. The detailed proofs can be
found in our previous papers.

Proposition 3.1 ([19, 21, 26–28, 45]) Let (V , 0) be a weighted homogeneous fewnomial
isolated singularity of type A which is defined by f = xa11 + xa22 with weight type
( 1
a1

, 1
a2

, · · · , 1
an

; 1). Then
τ(V ) = (a1 − 1)(a2 − 1); a1 ≥ 2, a2 ≥ 2.

τ 1(V ) = a1a2 − (a1 + a2) + 3; a1 ≥ 2, a2 ≥ 2.

τ 2(V ) =
{
a1a2 − (a1 + a2) + 6; a1 ≥ 3, a2 ≥ 3
a2 + 3; a1 = 2, a2 ≥ 2.

μ2(V ) =
{
a1a2 − (a1 + a2) + 7; a1 ≥ 3, a2 ≥ 3
a2 + 4; a1 = 2, a2 ≥ 2.

d2(V ) = (a1 − 2)(a2 − 2); a1 ≥ 3, a2 ≥ 3.

d3(V ) = (a1 − 3)(a2 − 3); a1 ≥ 5, a2 ≥ 5.

d4(V ) = (a1 − 4)(a2 − 4); a1 ≥ 6, a2 ≥ 6.

δ2(V ) = 2a1a2 − 5(a1 + a2) + 12; a1 ≥ 3, a2 ≥ 3.

δ3(V ) = 2a1a2 − 7(a1 + a2) + 24; a1 ≥ 5, a2 ≥ 5.

δ4(V ) = 2a1a2 − 9(a1 + a2) + 40; a1 ≥ 6, a2 ≥ 6.

λ(V ) = a1a2 − 3(a1 + a2) + 4; a1 ≥ 3, a2 ≥ 3.

λ1(V ) =
{
2a1a2 − 3(a1 + a2) + 10; a1 ≥ 3, a2 ≥ 3
a1 + 2; a1 ≥ 2, a2 = 2.

λ2(V ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2a1a2 − 3(a1 + a2) + 17; a1 ≥ 5, a2 ≥ 5
3a2 + 5; a1 = 3, a2 ≥ 4
13; a1 = 3, a2 = 3
5a2 + 4; a1 = 4, a2 ≥ 5
23; a1 = 4, a2 = 4
a2 + 5; a1 = 2, a2 ≥ 3
6; a1 = 2, a2 = 2
1; a1 = 1, a2 ≥ 1.

Remark 3.1 Note that μ = τ, μ1 = τ 1 in Proposition 3.1–3.8, thus τ, μ1 are not listed.

Proposition 3.2 ([19, 21, 26–28, 45]) Let (V , 0) be a binomial isolated singularity of type B
which is defined by f = xa11 x2 + xa22 with weight type ( a2−1

a1a2
, 1
a2

; 1). Then
τ(V ) = a2(a1 − 1) + 1; a1 ≥ 1, a2 ≥ 2.
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τ 1(V ) = a2(a1 − 1) + 3; a1 ≥ 1, a2 ≥ 2.

τ 2(V ) =
⎧
⎨

⎩

a1a2 − a2 + 6 a1 ≥ 2, a2 ≥ 3
5; a1 = 1, a2 ≥ 2
7; a1 = 2, a2 = 2.

μ2(V ) =
⎧
⎨

⎩

a1a2 − a2 + 7 a1 ≥ 2, a2 ≥ 3
6; a1 = 1, a2 ≥ 2
8; a1 = 2, a2 = 2.

d2(V ) = a1a2 − 2(a1 + a2) + 5; a1 ≥ 2, a2 ≥ 3.

d3(V ) = a1a2 − 3(a1 + a2) + 10; a1 ≥ 4, a2 ≥ 5.

d4(V ) = a1a2 − 4(a1 + a2) + 17; a1 ≥ 5, a2 ≥ 6.

δ2(V ) =
⎧
⎨

⎩

2a1a2 − 5(a1 + a2) + 15; a1 ≥ 4, a2 ≥ 3
a2 − 2; a1 = 3, a2 ≥ 3
0; a1 ≥ 3, a2 = 2.

δ3(V ) = 2a1a2 − 7(a1 + a2) + 27; a1 ≥ 4, a2 ≥ 5.

δ4(V ) = 2a1a2 − 9(a1 + a2) + 43; a1 ≥ 5, a2 ≥ 6.

λ(V ) = a1a2 − 2a1 − 3a2 + 5; a1 ≥ 2, a2 ≥ 3.

λ1(V ) =
⎧
⎨

⎩

2a1a2 − 2a1 − 3a2 + 11; a1 ≥ 2, a2 ≥ 3
2a1 + 2; a1 ≥ 2, a2 = 2
4; a1 = 1, a2 ≥ 2.

λ2(V ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2a1a2 − 2a1 − 3a2 + 20; a1 ≥ 5, a2 ≥ 5
5a2 + 12; a1 = 4, a2 ≥ 5
31; a1 = 4, a2 = 4
4a1 + 7; a1 ≥ 3, a2 = 3
2a1 + 5; a1 ≥ 2, a2 = 2
a2 + 11; a1 = 2, a2 ≥ 4
13; a1 = 2, a2 = 3
6; a1 = 1, a2 ≥ 2.

Proposition 3.3 ([19, 21, 26–28, 45]) Let (V , 0) be a binomial isolated singularity of type C
which is defined by f = xa11 x2 + xa22 x1 with weight type ( a2−1

a1a2−1 ,
a1−1
a1a2−1 ; 1). Then

τ(V ) =
{
a1a2; a1 ≥ 2, a2 ≥ 2
1; a1 = 1, a2 ≥ 1.

τ 1(V ) =
{
a1a2 + 2; a1 ≥ 2, a2 ≥ 2
3; a1 = 1, a2 ≥ 1.

τ 2(V ) =
{
a1a2 + 5 a1 ≥ 2, a2 ≥ 2
5; a1 = 1, a2 ≥ 1.

μ2(V ) =
{
a1a2 + 6 a1 ≥ 2, a2 ≥ 2
6; a1 = 1, a2 ≥ 1.

d2(V ) = a1a2 − 2(a1 + a2) + 7; a1 ≥ 2, a2 ≥ 2.

d3(V ) = a1a2 − 3(a1 + a2) + 11; a1 ≥ 4, a2 ≥ 4.

d4(V ) = a1a2 − 4(a1 + a2) + 18; a1 ≥ 5, a2 ≥ 5.
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δ2(V ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2a1a2 − 5(a1 + a2) + 19; a1 ≥ 5, a2 ≥ 5
a2 + 1; a1 = 3, a2 ≥ 3
3a2 − 2; a1 = 4, a2 ≥ 5
9; a1 = 4, a2 = 4
0; a1 = 2, a2 ≥ 2.

δ3(V ) =
{
2a1a2 − 7(a1 + a2) + 30; a1 ≥ 5, a2 ≥ 5
a2; a1 = 4, a2 ≥ 4.

δ4(V ) =
{
2a1a2 − 9(a1 + a2) + 46; a1 ≥ 6, a2 ≥ 6
a2 − 1; a1 = 5, a2 ≥ 5.

λ(V ) =
{
a1a2 − 2a1 − 2a2 + 6 a1 ≥ 3, a2 ≥ 3
2a2; a1 = 2, a2 ≥ 2.

λ1(V ) =

⎧
⎪⎪⎨

⎪⎪⎩

2a1a2 − 2a1 − 2a2 + 12; a1 ≥ 3, a2 ≥ 3
2a1 + 6; a1 ≥ 2, a2 = 2
4; a1 ≥ 1, a2 = 1
4; a1 = 1, a2 ≥ 2.

λ2(V ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2a1a2 − 2(a1 + a2) + 21; a1 ≥ 4, a2 ≥ 4
4a2 + 13; a1 = 3, a2 ≥ 4
2a2 + 10; a1 = 2, a2 ≥ 3
23; a1 = 3, a2 = 3
13; a1 = 2, a2 = 2
6; a1 = 1, a2 ≥ 1.

Proposition 3.4 ([19–21, 23, 26–28]) Let (V , 0) be a fewnomial surface isolated singularity
of type 1 which is defined by f = xa11 + xa22 + xa33 with weight type ( 1

a1
, 1
a2

, 1
a3

; 1). Then

τ(V ) = (a1 − 1)(a2 − 1)(a3 − 1); a1 ≥ 3, a2 ≥ 3, a3 ≥ 3.

τ1(V ) = a1a2a3 − a1a2 − a1a3 − a2a3 + a1 + a2 + a3 + 2; a1 ≥ 2, a2 ≥ 2, a3 ≥ 2.

τ2(V ) =

⎧
⎪⎪⎨

⎪⎪⎩

a1a2a3 − (a1a2 + a1a3 + a2a3) + (a1 + a2 + a3) + 10; a1 ≥ 3, a2 ≥ 3, a3 ≥ 3
a2a3 − a2 − a3 + 10; a1 = 2, a2 ≥ 3, a3 ≥ 3
a3 + 7; a1 = 2, a2 = 2, a3 ≥ 3
9; a1 = 2, a2 = 2, a3 = 2.

μ2(V ) =

⎧
⎪⎪⎨

⎪⎪⎩

a1a2a3 − (a1a2 + a1a3 + a2a3) + (a1 + a2 + a3) + 12; a1 ≥ 3, a2 ≥ 3, a3 ≥ 3
a2a3 − a2 − a3 + 12; a1 = 2, a2 ≥ 3, a3 ≥ 3
a3 + 9; a1 = 2, a2 = 2, a3 ≥ 3
10; a1 = 2, a2 = 2, a3 = 2.

d2(V ) = (a1 − 2)(a2 − 2)(a3 − 2); a1 ≥ 3, a2 ≥ 3, a3 ≥ 3.

d3(V ) = (a1 − 3)(a2 − 3)(a3 − 3); a1 ≥ 5, a2 ≥ 5, a3 ≥ 5.

d4(V ) = (a1 − 4)(a2 − 4)(a3 − 4); a1 ≥ 6, a2 ≥ 6, a3 ≥ 6.

δ2(V ) = 3a1a2a3 + 16(a1 + a2 + a3) − 7(a1a2 + a1a3 + a2a3) − 36;
a1 ≥ 3, a2 ≥ 3, a3 ≥ 3.

δ3(V ) = 3a1a2a3 + 33(a1 + a2 + a3) − 10(a1a2 + a1a3 + a2a3) − 108;
a1 ≥ 5, a2 ≥ 5, a3 ≥ 5.

δ4(V ) = 3a1a2a3 + 56(a1 + a2 + a3) − 13(a1a2 + a1a3 + a2a3) − 240;
a1 ≥ 6, a2 ≥ 6, a3 ≥ 6.

λ(V ) = 3(a1 − 1)(a2 − 1)(a3 − 1) − (a1 − 1)(a2 − 1)
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−(a1 − 1)(a3 − 1) − (a2 − 1)(a3 − 1); ai ≥ 3.

λ1(V ) = 3a1a2a3 + 5(a1 + a2 + a3) − 4(a1a2 + a1a3 + a2a3) + 6;
a1 ≥ 3, a2 ≥ 3, a3 ≥ 3.

λ2(V ) = 3a1a2a3 + 5(a1 + a2 + a3) − 4(a1a2 + a1a3 + a2a3) + 34;
a1 ≥ 3, a2 ≥ 3, a3 ≥ 3.

Proposition 3.5 ([19–21, 23, 26–28]) Let (V , 0) be a fewnomial isolated singularity of type
2 which is defined by f = xa11 x2 + xa22 x3 + xa33 with weight type ( 1−a3+a2a3

a1a2a3
, a3−1
a2a3

, 1
a3

; 1).
Then

τ(V ) = a1a2a3 − 1 + a3 − a2a3; a1 ≥ 1, a2 ≥ 1, a3 ≥ 2.

τ1(V ) = a1a2a3 − a2a3 + a3 + 2; a1 ≥ 1, a2 ≥ 1, a3 ≥ 2.

τ2(V ) =

⎧
⎪⎪⎨

⎪⎪⎩

a1a2a3 − a2a3 + a3 + 10; a1 ≥ 2, a2 ≥ 2, a3 ≥ 3
2a1a2 − 2a2 + 10; a1 ≥ 2, a2 ≥ 2, a3 = 2
a3 + 7; a1 = 1, a2 ≥ 1, a3 ≥ 2
a1a3 + 7; a1 ≥ 2, a2 = 1, a3 ≥ 2.

μ2(V ) =

⎧
⎪⎪⎨

⎪⎪⎩

a1a2a3 − a2a3 + a3 + 12; a1 ≥ 2, a2 ≥ 2, a3 ≥ 3
2a1a2 − 2a2 + 11; a1 ≥ 2, a2 ≥ 2, a3 = 2
a3 + 8; a1 = 1, a2 ≥ 1, a3 ≥ 2
a1a3 + 8; a1 ≥ 2, a2 = 1, a3 ≥ 2.

d2(V ) = a1a2a3 − 2(a1a2 + a1a3 + a2a3) + 5(a1 + a3) + 4a2 − 12;
a1 ≥ 2, a2 ≥ 2, a3 ≥ 3.

d3(V ) = a1a2a3 − 3(a1a2 + a1a3 + a2a3) + 10(a1 + a3) + 9a2 − 33;
a1 ≥ 4, a2 ≥ 4, a3 ≥ 5.

d4(V ) = a1a2a3 − 4(a1a2 + a1a3 + a2a3) + 17(a1 + a3) + 16a2 − 72;
a1 ≥ 5, a2 ≥ 5, a3 ≥ 6.

δ2(V ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

3a1a2a3 − 7(a1a2 + a1a3 + a2a3) + 20(a1 + a3) + 16a2 − 55; a1 ≥ 4, a2 ≥ 4, a3 ≥ 4
2a1a3 − a1 − 3a3 − 1; a1 ≥ 3, a2 = 3, a3 ≥ 4
2a2a3 − 5a2 − a3 + 5; a1 = 3, a2 ≥ 4, a3 ≥ 4
2a1a2 − 3a1 − 5a2 + 10; a1 ≥ 3, a2 ≥ 3, a3 = 3
a3 − 3; a1 = 2, a2 ≥ 2, a3 ≥ 3
a1 − 3; a1 ≥ 3, a2 = 2, a3 ≥ 3.

δ3(V ) =
⎧
⎨

⎩

3a1a2a3 − 10(a1a2 + a1a3 + a2a3) + 37(a1 + a3)
+33a2 − 135; a1 ≥ 4, a2 ≥ 5, a3 ≥ 5
2a1a3 − 3a1 − 5a2 + 5; a1 ≥ 4, a2 = 4, a3 ≥ 5.

δ4(V ) =
⎧
⎨

⎩

3a1a2a3 − 13(a1a2 + a1a3 + a2a3) + 60(a1 + a3)
+56a2 − 275; a1 ≥ 5, a2 ≥ 6, a3 ≥ 6
2a1a3 − 5a1 − 7a3 + 15; a1 ≥ 5, a2 = 5, a3 ≥ 6.

λ(V ) =
{
3a1a2a3 − 2a1a3 − 4a2a3 + 6a3 + 2a1 − 2a1a2 + 2a2 − 7; a1 ≥ 2, a2 ≥ 3, a3 ≥ 3
4a1a3 − 3a3 − 2a1 − 1; a1 ≥ 2, a2 = 2, a3 ≥ 3.

λ1(V ) =
⎧
⎨

⎩

5a3 + 7; a1 = 2, a2 = 2, a3 ≥ 3
4a1a3 − 2a1 − 3a3 + 11; a1 ≥ 3, a2 = 2, a3 ≥ 3
3a1a2a3 − 2a1a2 − 2a1a3 − 4a2a3 + 2a1 + 2a2 + 6a3 + 5; Otherwise.

λ2(V ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

3a1a2a3 + 2a1 + 2a2 + 6a3 − 4a2a3 − 2a1a2 − 2a1a3 + 37; a1 ≥ 3, a2 ≥ 3, a3 ≥ 3
4a2 + 42; a1 = 2, a2 ≥ 3, a3 = 3
2a2a3 − 2a2 + 2a3 + 38; a1 = 2, a2 ≥ 3, a3 ≥ 4
4a1a3 − 3a3 − 2a1 + 42; a1 ≥ 3, a2 = 2, a3 ≥ 4
5a3 + 35; a1 = 2, a2 = 2, a3 ≥ 4
46; a1 = 2, a2 = 2, a3 = 3
10a1 + 32; a1 ≥ 3, a2 = 2, a3 = 3.
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Proposition 3.6 ([19–21, 23, 26–28]) Let (V , 0) be a fewnomial isolated singularity of type
3 which is defined by f = xa11 x2 + xa22 x3 + xa33 x1 with weight type ( 1−a3+a2a3

1+a1a2a3
, 1−a1+a1a3

1+a1a2a3
,

1−a2+a1a2
1+a1a2a3

; 1). Then

τ(V ) = a1a2a3; a1 ≥ 1, a2 ≥ 1, a3 ≥ 1.

τ 1(V ) = a1a2a3 + 3; a1 ≥ 1, a2 ≥ 1, a3 ≥ 1.

τ 2(V ) =
{
a1a2a3 + 11; a1 ≥ 2, a2 ≥ 2, a3 ≥ 2
a2a3 + 8; a1 = 1, a2 ≥ 1, a3 ≥ 1.

μ2(V ) =
{
a1a2a3 + 13; a1 ≥ 2, a2 ≥ 2, a3 ≥ 2
a2a3 + 9; a1 = 1, a2 ≥ 1, a3 ≥ 1.

d2(V ) = a1a2a3 − 2(a1a2 + a1a3 + a2a3) + 5(a1 + a2 + a3) − 14;
a1 ≥ 2, a2 ≥ 2, a3 ≥ 2.

d3(V ) = a1a2a3 − 3(a1a2 + a1a3 + a2a3) + 10(a1 + a2 + a3) − 36;
a1 ≥ 4, a2 ≥ 4, a3 ≥ 4.

d4(V ) = a1a2a3 − 4(a1a2 + a1a3 + a2a3) + 17(a1 + a2 + a3) − 76;
a1 ≥ 5, a2 ≥ 5, a3 ≥ 5.

δ2(V ) =
{
3a1a2a3 + 20(a1 + a2 + a3) − 7(a1a2 + a1a3 + a2a3) − 63; a1 ≥ 3, a2 ≥ 3, a3 ≥ 3
a3 − 2; a1 = 2, a2 ≥ 2, a3 ≥ 2.

δ3(V ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3a1a2a3 + 37(a1 + a2 + a3) − 10(a1a2 + a1a3 + a2a3)
−147; a1 ≥ 5, a2 ≥ 5, a3 ≥ 5
2a2a3 − 5a2 − 3a3 + 9; a1 = 4, a2 ≥ 5, a3 ≥ 4
2a1a3 − 3a1 − 5a3 + 9; a1 ≥ 4, a2 = 4, a3 ≥ 4
2a1a2 − 5a1 − 3a2 + 9; a1 ≥ 5, a2 ≥ 5, a3 = 4.

δ4(V ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3a1a2a3 + 60(a1 + a2 + a3) − 13(a1a2 + a1a3 + a2a3)
−291; a1 ≥ 6, a2 ≥ 6, a3 ≥ 6
2a2a3 − 7a2 − 5a3 + 19; a1 = 5, a2 ≥ 6, a3 ≥ 5
2a1a3 − 5a1 − 7a3 + 19; a1 ≥ 5, a2 = 5, a3 ≥ 5
2a1a2 − 7a1 − 5a2 + 19; a1 ≥ 6, a2 ≥ 6, a3 = 5.

λ(V ) =
{
12; a1 = 2, a2 = 2, a3 = 2
3a1a2a3 − 2(a1a2 + a1a3 + a2a3) + 2(a1 + a2 + a3) − 1; Otherwise.

λ1(V ) =
{
24; a1 = 2, a2 = 2, a3 = 2
3a1a2a3 + 2(a1 + a2 + a3) − 2(a1a2 + a1a3 + a2a3) + 11; Otherwise.

λ2(V ) =
{
3a1a2a3 + 2(a1 + a2 + a3) − 2(a1a2 + a1a3 + a2a3) + 43; a1 ≥ 3, a2 ≥ 3, a3 ≥ 3
4a2a3 − 2(a2 + a3) + 46; a1 = 2, a2 ≥ 3, a3 ≥ 3.

Proposition 3.7 ([19–21, 23, 26–28]) Let (V , 0) be a fewnomial surface isolated singularity
of type 4 which is defined by f = xa11 + xa22 + xa33 x2 with weight type ( 1

a1
, 1
a2

, a2−1
a2a3

; 1). Then

τ(V ) = a1a2a3 − a1a2 − a2a3 + a1 + a2 − 1; a1 ≥ 2, a2 ≥ 2, a3 ≥ 1.

τ1(V ) = a1a2a3 − a1a2 − a2a3 + a1 + a2 + 2; a1 ≥ 2, a2 ≥ 2, a3 ≥ 1.

τ2(V ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a1a2a3 − a1a2 − a2a3 + a1 + a2 + 10; a1 ≥ 3, a2 ≥ 3, a3 ≥ 2
2a1a3 − a1 − 2a3 + 10; a1 ≥ 3, a2 = 2, a3 ≥ 2
a1 + 7; a1 ≥ 2, a2 ≥ 2, a3 = 1
a2a3 − a2 + 10; a1 = 2, a2 ≥ 3, a3 ≥ 2
2a3 + 7; a1 = 2, a2 = 2, a3 ≥ 2.
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μ2(V ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a1a2a3 − a1a2 − a2a3 + a1 + a2 + 12; a1 ≥ 3, a2 ≥ 3, a3 ≥ 3
a1a2 + a1 − a2 + 11; a1 ≥ 3, a2 ≥ 3, a3 = 2
2a1a3 − a1 − 2a3 + 12; a1 ≥ 3, a2 = 2, a3 ≥ 2
a1 + 8; a1 ≥ 2, a2 ≥ 2, a3 = 1
a2a3 − a2 + 11; a1 = 2, a2 ≥ 3, a3 ≥ 2
2a3 + 9; a1 = 2, a2 = 2, a3 ≥ 2.

d2(V ) = a1a2a3 − 2(a1a2 + a1a3 + a2a3) + 4(a1 + a3) + 5a2 − 10;
a1 ≥ 3, a2 ≥ 3, a3 ≥ 2.

d3(V ) = a1a2a3 − 3(a1a2 + a1a3 + a2a3) + 9(a2 + a3) + 10a1 − 30;
a1 ≥ 5, a2 ≥ 5, a3 ≥ 4.

d4(V ) = a1a2a3 − 4(a1a2 + a1a3 + a2a3) + 16(a2 + a3) + 17a1 − 68;
a1 ≥ 6, a2 ≥ 6, a3 ≥ 5.

δ2(V ) =
⎧
⎨

⎩

3a1a2a3 + 16(a1 + a3) + 20a2 − 7(a1a2 + a1a3 + a2a3) − 45; a1 ≥ 4, a2 ≥ 3, a3 ≥ 3
2a2a3 − 3a2 − 5a3 + 7; a1 = 3, a2 ≥ 3, a3 ≥ 2
a2 − 3; a1 ≥ 4, a2 ≥ 3, a3 = 2.

δ3(V ) = 3a1a2a3 + 37a1 + 33(a2 + a3) − 10(a1a2 + a1a3 + a2a3) − 121;
a1 ≥ 5, a2 ≥ 5, a3 ≥ 4.

δ4(V ) = 3a1a2a3 + 60a1 + 56(a2 + a3) − 13(a1a2 + a1a3 + a2a3) − 257;
a1 ≥ 6, a2 ≥ 6, a3 ≥ 5.

λ(V ) = 3a1a2a3 − 4a1a2 − 4a2a3 − 2a1a3 + 6a1 + 5a2 + 2a3 − 7; a1 ≥ 3, a2 ≥ 3, a3 ≥ 2.

λ1(V ) = 3a1a2a3 − 4a1a2 − 4a2a3 − 2a1a3 + 6a1 + 5a2 + 2a3 + 5; a1 ≥ 3, a2 ≥ 3, a3 ≥ 2.

λ2(V ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

7a1a3 − 6a1 − 10a3 + 48; a1 ≥ 3, a2 = 3, a3 ≥ 3
5a2a3 − 7a2 − 4a3 + 53; a1 = 3, a2 ≥ 4, a3 ≥ 3
3a1a2a3 + 6a1 + 5a2 + 2a3 − 4a2a3 − 4a1a2 − 2a1a3 + 35; a1 ≥ 4, a2 ≥ 4, a3 ≥ 3
11a1a2 − 3a1 − 15a2 + 41; a1 ≥ 4, a2 ≥ 4, a3 = 5
46; a1 = 3, a2 = 3, a3 = 2
2a1a2 + 2a1 − 3a2 + 36; a1 ≥ 4, a2 ≥ 4, a3 = 2
3a2 + 40; a1 = 3, a2 ≥ 4, a3 = 2
8a1 + 26; a1 ≥ 4, a2 = 3, a3 = 2.

Proposition 3.8 ([19–21, 23, 26–28]) Let (V , 0) be a fewnomial surface isolated singularity
of type 5which is defined by f = xa11 x2+xa22 x1+xa33 withweight type ( a2−1

a1a2−1 ,
a1−1
a1a2−1 ,

1
a3

; 1).
Then

τ(V ) = a1a2a3 − a1a2; a1 ≥ 1, a2 ≥ 1, a3 ≥ 2.

τ1(V ) = a1a2a3 − a1a2 + 3; a1 ≥ 1, a2 ≥ 1, a3 ≥ 2.

τ2(V ) =

⎧
⎪⎪⎨

⎪⎪⎩

a1a2a3 − a1a2 + 11; a1 ≥ 2, a2 ≥ 2, a3 ≥ 3
a1a2 + 9; a1 ≥ 2, a2 ≥ 2, a3 = 2
a3 + 7; a1 = 1, a2 ≥ 1, a3 ≥ 2
a3 + 7; a1 ≥ 2, a2 = 1, a3 ≥ 2.

μ2(V ) =

⎧
⎪⎪⎨

⎪⎪⎩

a1a2a3 − a1a2 + 13; a1 ≥ 2, a2 ≥ 2, a3 ≥ 3
a1a2 + 10; a1 ≥ 2, a2 ≥ 2, a3 = 2
a3 + 8; a1 = 1, a2 ≥ 1, a3 ≥ 2
a3 + 8; a1 ≥ 2, a2 = 1, a3 ≥ 2.

d2(V ) = a1a2a3 − 2(a1a2 + a1a3 + a2a3) + 4(a1 + a2) + 7a3 − 14;
a1 ≥ 2, a2 ≥ 2, a3 ≥ 3.

d3(V ) = a1a2a3 − 3(a1a2 + a1a3 + a2a3) + 9(a1 + a2) + 11a3 − 33;
a1 ≥ 4, a2 ≥ 4, a3 ≥ 5.

d4(V ) = a1a2a3 − 4(a1a2 + a1a3 + a2a3) + 16(a1 + a2) + 18a3 − 72;
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a1 ≥ 5, a2 ≥ 5, a3 ≥ 6.

δ2(V ) =

⎧
⎪⎪⎨

⎪⎪⎩

3a1a2a3 + 16(a1 + a2) + 26a3 − 7(a1a2 + a1a3 + a2a3) − 59; a1 ≥ 5, a2 ≥ 5, a3 ≥ 3
a3 − 3; a1 = 2, a2 ≥ 2, a3 ≥ 3
2a2a3 − 5a2 + 2a3 − 5; a1 = 3, a2 ≥ 3, a3 ≥ 3
6a2a3 − 14a2 − 8a3 + 17; a1 = 4, a2 ≥ 4, a3 ≥ 3.

δ3(V ) =
⎧
⎨

⎩

3a1a2a3 + 33(a1 + a2) + 41a3 − 10(a1a2 + a1a3 + a2a3)
−134; a1 ≥ 5, a2 ≥ 5, a3 ≥ 5
2a2a3 − 7a2 − a3 + 4; a1 = 4, a2 ≥ 4, a3 ≥ 5.

δ4(V ) =
⎧
⎨

⎩

3a1a2a3 + 56(a1 + a2) + 64a3 − 13(a1a2 + a1a3 + a2a3)
−274; a1 ≥ 6, a2 ≥ 6, a3 ≥ 6
2a2a3 − 9a2 − 4a3 + 20; a1 = 5, a2 ≥ 5, a3 ≥ 6.

λ(V ) =
{
3a1a2a3 − 4a1a2 − 2(a2a3 + a1a3) + 2(a1 + a2) + 6a3 − 6; a1 ≥ 3, a2 ≥ 3, a3 ≥ 3
4a2a3 − 6a2; a1 = 2, a2 ≥ 2, a3 ≥ 3.

λ1(V ) =
{
4a2a3 − 6a2 + 12; a1 = 2, a2 ≥ 2, a3 ≥ 2
3a1a2a3 − 4a1a2 − 2a2a3 − 2a1a3 + 2a1 + 2a2 + 6a3 + 6; Otherwise.

λ2(V ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

3a1a2a3 − 4a1a2 − 2a2a3 − 2a1a3 + 2a1 + 2a2 + 6a3 + 36; a1 ≥ 4, a2 ≥ 4, a3 ≥ 3
7a2a3 − 10a2 + 40; a1 = 3, a2 ≥ 3, a3 ≥ 3
4a2a3 − 6a2 + 39; a1 = 2, a2 ≥ 4, a3 ≥ 4
8a3 + 26; a1 = 2, a2 = 2, a3 ≥ 4
46; a1 = 2, a2 = 2, a3 = 3
12a3 + 21; a1 = 2, a2 = 3, a3 ≥ 4
55; a1 = 2, a2 = 3, a3 = 3.

Proof of Theorem A. Since

Mk(V ) = On
/
Jk( f ) = On

/
(xa1−k

1 , · · · , xan−k
n )

∼= C{x1}
/
(xa1−k

1 ) ⊗ C{x2}
/
(xa2−k

2 ) ⊗ · · · ⊗ C{xn}
/
(xan−k

n ),

so we have

δk(V ) =dim

(

DerMk(V )

)

=
n∑

i=1

dim

(

C{x1}
/
(xa1−k

1 )

)

· · · dim
(

C{xi−1}
/
(xai−1−k

i−1 )

)

· dim
(

Der(C{xi }
/
(xai−k

i ))

)

· dim
(

C{xi+1}
/
(xai+1−k

i+1 )

)

· · · dim
(

C{xn}
/
(xan−k

n )

)

.

Since Der

(

C{xi }
/
(xai−k

i )

)

is spanned by x j
i ∂xi , 1 ≤ j ≤ ai − k − 1,

so, dim

(

Der(C{xi }
/
(xai−k

i ))

)

= ai − k − 1. Notice that dim

(

{xi }
/
(xai−k

i )

)

= ai − k,

1 ≤ i ≤ n.

Therefore

δk(V ) =
n∑

i

(a1 − k) · · · (ai−1 − k)(ai − k − 1)(ai+1 − k) · · · (an − k)
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= n
n∏

i=1

(ai − k) −
n∑

i

(a1 − k)(a2 − k) · · · ̂(ai − k) · · · (an − k).

��
Proof of Theorem B.

Lk(V f +g) = Der

(

On+m
/
Jk( f + g)

)

= Der

(

On+m
/
(Jk( f ) + Jk(g))

)

= Der

(

(On
/
Jk( f )) ⊗ (Om

/
Jk(g))

)

= Der

(

On
/
Jk( f )

)

⊗ Om
/
Jk(g) + On

/
Jk( f ) ⊗ Der

(

Om
/
Jk(g)

)

= Lk(V f ) ⊗ Mk(g) + Lk(Vg) ⊗ Mk( f )

⇒ δk(V f +g) = dk(V f )δk(Vg) + dk(Vg)δk(V f ).

The first equality above comes from the fact that f , g are weighted homogeneous while the
fourth equality follows from the Theorem 2.1.

Since both f and g saitisfy the conjecture 1.5, we have

δk(V f ) ≤ n
n∏

i=1

(
1

wi
− k

)

−
n∑

i

(
1

w1
− k

) (
1

w2
− k

)

· · ·
̂

(
1

wi
− k

)

· · ·
(

1

wn
− k

)

,

(3.1)

where ̂( 1
wi

− k) denotes the omission of 1
wi

− k.

δk(Vg) ≤ m
m∏

i=1

(
1

wn+i
− k

)

−
m∑

i

(
1

wn+1
− k

)(
1

wn+2
− k

)

· · ·
̂

(
1

wn+i
− k

)

· · ·
(

1

wn+m
− k

)

.

(3.2)

We have

dk(V f ) =
n∏

i=1

(
1

wi
− k

)

, (3.3)

dk(Vg) =
m∏

i=1

(
1

wn+i
− k

)

. (3.4)

From above we can see that Mk(V f +g) = Mk(V f ) ⊗ Mk(Vg), thus dk(V f +g) =
dk(V f )dk(Vg). Combining this fact with the (3.1), (3.2), (3.3), and (3.4), we have

δk(V f +g) = dk(V f )δk(Vg) + dk(Vg)δk(V f )

≤ (n + m)dk( f + g) −
n+m∑

i

(
1

w1
− k

)(
1

w2
− k

)

· · ·
̂

(
1

wi
− k

)

· · ·
(

1

wn+m
− k

)

= (n + m)

n+m∏

i=1

(
1

wi
− k

)

−
n+m∑

i

(
1

w1
− k

)(
1

w2
− k

)

· · ·
̂

(
1

wi
− k

)

· · ·
(

1

wn
− k

)

,

which shows that f + g satisfies the Conjecture 1.5. ��
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Proof of Theorem C. Let f ∈ C{x1, x2} be a weighted homogeneous fewnomial isolated
singularity. Then f can be divided into the following three types same as in Corollary 2.1:

Type A. xa11 + xa22 ,
Type B. xa11 x2 + xa22 ,
Type C. xa11 x2 + xa22 x1.
It follows from Propositions 3.1–3.3 that the inequalities dk(V ) ≤ �k(

1
w1

, 1
w2

), k =
2, 3, 4, hold true. ��
Proof of TheoremD. Let f ∈ C{x1, x2, x3} be a weighted homogeneous fewnomial isolated
surface singularity. Then f can be divided into the five types same as in Proposition 2.2.
It follows from Propositions 3.4–3.8 that the inequalities dk(V ) ≤ �k(

1
w1

, 1
w2

, 1
w3

), k =
2, 3, 4, hold true. ��
Proof of Theorem E. Let f ∈ C{x1, x2} be a weighted homogeneous fewnomial isolated sin-
gularity. Then f can be divided into the three types same as in Corollary 2.1. It follows from

Propositions 3.1–3.3 that the inequality μ2

τ 2
< 4

3 , holds true. ��
Proof of Theorem F. Let f ∈ C{x1, x2, x3} be a weighted homogeneous fewnomial isolated
surface singularity. Then f can be divided into the five types same as in Proposition 2.2. It

follows from Propositions 3.4–3.8 that the inequality μ2

τ 2
< 3

2 , holds true. ��
Proof of TheoremG. Let f ∈ C{x1, x2} be a weighted homogeneous fewnomial isolated
singularity. Then f can be divided into the three types same as in Corollary 2.1. It follows
from Propositions 3.1–3.3 that the inequality

λ2(V ) > λ1(V ) > λ0(V ) = δ1(V ) = λ0(V ) = λ2(V ) > λ1(V ) = δ2(V ) > δ3(V ) > δ4(V ),

holds true. ��
Proof of TheoremH. Let f ∈ C{x1, x2, x3} be a weighted homogeneous fewnomial isolated
surface singularity. Then f can be divided into the five types same as in Proposition 2.2. It
follows from Propositions 3.4–3.8 that the inequality

λ2(V ) > λ1(V ) > λ0(V ) = δ1(V ) = λ0(V ) = λ3(V ) > λ1(V ) = δ2(V ) > δ3(V ) > δ4(V ),

holds true. ��
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