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THE WEIGHTS OF ISOLATED CURVE SINGULARITIES
ARE DETERMINED BY HODGE IDEALS

YANG WANG, STEPHEN S.-T. YAU AND HUAIQING ZUO

We calculate Hodge ideals and Hodge moduli algebras for three types of
isolated quasihomogeneous curve singularities. We show that Hodge ideals
and Hodge moduli algebras of the singularities can determine the weights
of the polynomials defining the singularities. We give some examples to
explain why Hodge moduli algebras and the Hodge moduli sequence are
better invariants than the characteristic polynomial (a topological invariant
of the singularity) for nondegenerate quasihomogeneous singularities, in the
sense that the characteristic polynomial cannot determine the weight type of
the singularity.

1. Introduction

In [15; 16], the authors ask whether the topology of the singularity determines
the weights of the polynomial defining the singularity. They showed that this is
valid in the category of isolated singularities of Brieskorn–Pham type and isolated
quasihomogeneous curve singularities.

Theorem 1.1 [15]. The topology of a singularity of Brieskorn–Pham type deter-
mines the exponents (weight) of the polynomial defining the singularity.

Theorem 1.2 [16]. Let fi (z1, z2), i = 1, 2, be nondegenerate quasihomogeneous
polynomials of weight (ri1, ri2; 1), 0 ≤ ri1 ≤ ri2 ≤

1
2 , and let Vi be the germ

of fi (z1, z2) = 0 at the origin of C2. Then if (C2, V1, 0) ≃ (C2, V2, 0), homeomor-
phically, we have (r11, r12) = (r21, r22).

For quasihomogeneous surface singularities, there are some relevant results.
Arnold [1, pages 91–131] and Orlik and Wagreich [9] showed that if h(z0, z1, z2) is
a quasihomogeneous polynomial in C3 and V ={h(z)=0} has an isolated singularity
at the origin, then V can be deformed into one of the following seven classes below
while keeping the differentiable structure of the link KV = S2n+1

ϵ ∩ V constant:
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(I) V (a0, a1, a2; 1) = {za0
0 + za1

1 + za2
2 }, a0, a1, a2 > 1,

(II) V (a0, a1, a2; 2) = {za0
0 + za1

1 + z1za2
2 }, a0, a1 > 1, a2 > 0,

(III) V (a0, a1, a2; 3) = {za0
0 + za1

1 z2 + z1za2
2 }, a0 > 1, a1, a2 > 0,

(IV) V (a0, a1, a2; 4) = {za0
0 + za1

1 z2 + z0za2
2 }, a0 > 1, a1, a2 > 0,

(V) V (a0, a1, a2; 5) = {za0
0 z1 + za1

1 z2 + z0za2
2 }, a0, a1, a2 > 0,

(VI) V (a0, a1, a2; 6) = {za0
0 + z0za1

1 + z0za2
2 + zb1

1 zb2
2 }, a0 > 1, a1, a2, b1, b2 > 0

satisfy (a0 − 1)(a1b2 + a2b1) = a0a1a2,

(VII) V (a0, a1, a2; 7)={za0
0 z1+z0za1

1 +z0za2
2 +zb1

1 zb2
2 }, a0, a1, a2, b1, b2 >0 satisfy

(a0 − 1)(a1b2 + a2b1) = a2(a0a1 − 1).

Xu and Yau [14] proved that the above deformation is actually a topological trivial
deformation as a pair (S2n+1, KV ). Therefore any isolated quasihomogeneous
surface singularity has the same topological type of one of the seven classes above.
Let 1V (z) denote the characteristic polynomial of the Milnor fibration of (V, 0).

Theorem 1.3 [14]. If (V, 0) and (W, 0) are among the seven classes above, then
(C3, V, 0) is biholomorphic to (C3, W, 0) if and only if (C3, V, 0) is homeomorphic
to (C3, W, 0) with some exceptional cases. And (C3, V, 0) is homeomorphic to
(C3, W, 0) if and only if π1(KV ) ≃ π1(KW ) and 1V (z) = 1W (z).

The following are direct corollaries of the above theorem:

Corollary 1.4 [14]. Let (V, 0) and (W, 0) be two isolated quasihomogeneous
surface singularities in C3. Then (C3, V, 0) is homeomorphic to (C3, W, 0) if and
only if π1(KV ) ≃ π1(KW ) and 1V (z) = 1W (z).

Corollary 1.5 [14]. Let (V, 0) be an isolated quasihomogeneous surface singularity
with weights (w0, w1, w2). Then the topological type of (V, 0) determines and is
determined by its weights (w0, w1, w2).

Corollary 1.6 [14]. Let (V, 0) be an isolated singularity defined by a quasihomo-
geneous polynomial in C3 with weights (w0, w1, w2). Then the fundamental group
of the link π1(KV ) and the characteristic polynomial 1V (z) determine and are
determined by the weights (w0, w1, w2).

The original motivation of [14] was to prove the Zariski conjecture (see [17]) for
isolated quasihomogeneous surface singularities in C3

: multiplicity is an invariant
of topological type. As a corollary, they proved:

Corollary 1.7 [14]. Let (V, 0) and (W, 0) be two isolated quasihomogeneous
surface singularities in C3. If (C3, V, 0) is homeomorphic to (C3, W, 0), then V
and W have the same multiplicity at the origin.
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Recall that in [3], we proved that a series of new invariants, Hodge moduli
algebras and the Hodge moduli sequence, of the singularity are complete contact
invariants for simple surface singularities. And our final aim is to extend this result
to isolated quasihomogeneous surface singularities or even more general types
of singularity. Note that in the proof of the above theorems, the characteristic
polynomial of the singularity plays a fundamental role, since the characteristic
polynomial is a topological invariant of the singularity. Motivated by these results
and our former results, it is natural to ask whether we can replace the characteristic
polynomial by Hodge ideals and Hodge moduli algebras of the singularity to
determine the weights of the polynomials defining the singularities. That is, we
want to prove if the i-th Hodge moduli algebras of two isolated quasihomogeneous
curve singularities are isomorphic for all i ≥ 0, then the weights of these two
singularities are the same.

If h(x, y) is a quasihomogeneous polynomial in C2 and V = {h(x, y) = 0}

has an isolated singularity at the origin, then V can be deformed into one of the
following three classes below while keeping the differentiable structure of the
link KV = S2n+1

ϵ ∩ V constant:

F1(x, y) = xa
+ yb, a, b ≥ 2,

F2(x, y) = xa
+ xyb, a ≥ 2, b ≥ 1,

F3(x, y) = xa y + xyb, a, b ≥ 1.

After a tedious calculation for Hodge ideals and Hodge moduli algebras of isolated
quasihomogeneous curve singularities of the above three types, we obtain the
following.

Main Theorem A (0-th and 1-st Hodge moduli algebras determine weight type).
(1) For isolated quasihomogeneous curve singularities

D(a1,b1)
1 = {xa1 + yb1 = 0}, 2 ≤ a1 ≤ b1,

and

D(a2,b2)
2 = {xa2 + xyb2 = 0}, 1 ≤ a2 − 1 ≤ b2,

if their 0-th and 1-st Hodge moduli algebras (taking α = 1 in their Hodge ideals)
are isomorphic, i.e.,

M0(D(a1,b1)
1 ) ≃ M0(D(a2,b2)

2 ), M1(D(a1,b1)
1 ) ≃ M1(D(a2,b2)

2 ),

then the weight types of D(a1,b1)
1 and D(a2,b2)

2 are the same, i.e.,

wt(F (a1,b1)
1 ) = wt(F (a2,b2)

2 ).
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(2) For isolated quasihomogeneous curve singularities

D(a2,b2)
2 = {xa2 + xyb2 = 0}, a2 − 1 ≥ b2 ≥ 1,

and
D(a3,b3)

3 = {xa3 y + xyb3 = 0}, 1 ≤ a3 ≤ b3,

if their 0-th and 1-st Hodge moduli algebras (taking α = 1 in their Hodge ideals)
are isomorphic, i.e.,

M0(D(a2,b2)
2 ) ≃ M0(D(a3,b3)

3 ), M1(D(a2,b2)
2 ) ≃ M1(D(a3,b3)

3 ),

then the weight types of D(a2,b2)
2 and D(a3,b3)

3 are the same, i.e.,

wt(F (a1,b1)
1 ) = wt(F (a3,b3)

3 ).

(3) For isolated quasihomogeneous curve singularities

D(a1,b1)
1 = {xa1 + yb1 = 0}, a1, b1 ≥ 2,

and
D(a3,b3)

3 = {xa3 y + xyb3 = 0}, a3, b3 ≥ 1,

their i-th Hodge moduli algebras (taking α = 1 in their Hodge ideals) are not
isomorphic, for i = 0, 1, respectively.

As a by-product, we obtain an inequality of the δ-invariant, 0-th Hodge moduli
number and multiplicity for isolated quasihomogeneous curve singularities of the
above three types:

Main Theorem B. (1) For isolated quasihomogeneous curve singularities D(a,b)
1 =

{xa
+ yb

= 0}, a, b ≥ 2, we have

0 ≤ δ1(a, b) − m0(D(a,b)
1 ) ≤ mt(D(a,b)

1 ),

where δ1(a, b) is the δ-invariant of D(a,b)
1 , m0(D(a,b)

1 ) is the 0-th Hodge moduli
number of the divisor D(a,b)

1 for α = 1 and mt(D(a,b)
1 ) is the multiplicity of D(a,b)

1 .

(2) For isolated quasihomogeneous curve singularities D(a,b)
2 = {xa

+ xyb
= 0},

a ≥ 2, b ≥ 1, we have

1 ≤ δ2(a, b) − m0(D(a,b)
2 ) ≤ mt(D(a,b)

2 ),

where δ2(a, b) is the δ-invariant of D(a,b)
2 , m0(D(a,b)

2 ) is the 0-th Hodge moduli
number of the divisor D(a,b)

2 for α = 1 and mt(D(a,b)
2 ) is the multiplicity of D(a,b)

2 .

(3) For isolated quasihomogeneous curve singularities D(a,b)
3 = {xa y + xyb

= 0},
a, b ≥ 1, we have

2 ≤ δ3(a, b) − m0(D(a,b)
3 ) ≤ mt(D(a,b)

3 ),
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where δ3(a, b) is the δ-invariant of D(a,b)
3 , m0(D(a,b)

3 ) is the 0-th Hodge moduli
number of the divisor D(a,b)

3 for α = 1 and mt(D(a,b)
3 ) is the multiplicity of D(a,b)

3 .

In Section 2, we recall a number of classical results on the Hodge ideals of
effective Q-divisors and the δ-invariants of curve singularities. We also collect
some important lemmas and theorems that will be used in the following parts.
In Section 3, we explicitly calculate Hodge ideals and Hodge moduli algebras of
isolated quasihomogeneous curve singularities of three types. In Sections 4 and 5 we
prove Main Theorems A and B by the results in Section 3. Finally, in Section 6 we
give some examples to illustrate that Hodge moduli algebras and the Hodge moduli
sequence are better invariants than the characteristic polynomial (a topological invari-
ant of singularity) for nondegenerate quasihomogeneous singularities. Furthermore,
from the observation of some examples, we raise a conjecture that the Hodge moduli
numbers of isolated quasihomogeneous curve singularities remain constant under
quasihomogeneous deformation. That is, Hodge moduli numbers of isolated quasi-
homogeneous curve singularities only depend on the weights of the singularities.

2. Preliminaries

2.1. Hodge ideals. In [7; 8], the authors extend the notion of Hodge ideals to the
case when D is an arbitrary effective Q-divisor on X , where X is a smooth complex
variety. Hodge ideals {Ik(D)}k∈N are defined in terms of the Hodge filtration F• on
some DX -module associated with D (see [7, §2–§4] for more details). When D is an
integral and reduced divisor, this recovers the definition of Hodge ideals Ik(D) in [6].

Let X be a smooth complex variety, and DX be the sheaf of differential operators
on X . If H is an integral and reduced effective divisor on X , D =αH , α ∈Q∩(0, 1],

let OX (∗D) be the sheaf of rational functions with poles along D. It is also a left
DX -module underlying the mixed Hodge module j∗QH

U [n], where U = X \ D and
j : U ↪→ X is the inclusion map. Any DX -module associated with a mixed Hodge
module has a good filtration F•, the Hodge filtration of the mixed Hodge module [12].

To study the Hodge filtration of OX (∗D), it seems easier to consider a series of
ideal sheaves, defined by Mustat,ă and Popa [6], which can be considered to be a
generalization of multiplier ideals of divisors. The Hodge ideals {Ik(D)}k∈N of the
divisor D are defined by

FkOX (∗D) = Ik(D) ⊗ OX ((k + 1)D) for all k ∈ N.

These are coherent sheaves of ideals. See [6] for details and an extensive study
of the ideals Ik(D). Hodge ideals are indexed by the nonnegative integers; at
the 0-th step, they essentially coincide with multiplier ideals. It turns out that
I0(D) = J ((1−ϵ)D), the multiplier ideal of the divisor (1−ϵ)D, 0 < ϵ ≪ 1. The
multiplier ideal sheaves are ubiquitous objects in birational geometry, encoding
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local numerical invariants of singularities, and satisfying Kodaira-type vanishing
theorems in the global setting. The Hodge ideals are interesting invariants of the
singularities, they have similar properties as multiplier ideals.

We summarize the properties and results (see [7; 5]) of Hodge ideals as follows.
Given a reduced effective divisor H on a smooth complex variety X , D = αH ,

α ∈ Q ∩ (0, 1], we also denote by Z the support of D. The sequence of Hodge
ideals Ik(D), with k ≥ 0, satisfies these properties:

• I0(D) is the multiplier ideal I((1 − ϵ)D), so in particular I0(D) = OX if and
only if the pair(X, D) is log canonically.

• When Z has simple normal crossings,

Ik(D) = Ik(Z) ⊗ OX (Z − ⌈D⌉),

where Ik(Z) can be computed explicitly as in [6]. If Z is smooth, then Ik(D) =

OX (Z − ⌈D⌉).

• The Hodge filtration is generated at level n − 1, where n = dim X , i.e.,

FℓDX · (Ik(D) ⊗ OX (k Z)h−α) = Ik+ℓ(D) ⊗ OX ((k + ℓ)Z)h−α

for all k ⩾ n − 1 and ℓ ⩾ 0.

• There are nontriviality criteria for Ik(D) at a point x ∈ D in terms of the multi-
plicity of D at x .

• If X is projective, Ik(D) satisfy a vanishing theorem analogous to Nadel vanishing
for multiplier ideals.

• If Y is a smooth divisor in X such that Z |Y is reduced, then Ik(D) satisfy

Ik(D|Y ) ⊆ Ik(D) · OY ,

with equality when Y is general.

• If X → T is a smooth family with a section s : T → X , and D is a relative divisor
on X that satisfies a suitable condition then

{t ∈ T | Ik(Dt) ⊈m
q
s(t)}

is an open subset of T , for each q ⩾ 1.

• If D1 and D2 are Q-divisors with supports Z1 and Z2, such that Z1 + Z2 is also
reduced, then we have the subadditivity property

Ik(D1 + D2) ⊆ Ik(D1) · Ik(D2)

For comparison, the list of properties of Hodge ideals in the case when D is
reduced is summarized in [10]. The setting of Q-divisors is more intricate. For
instance, the bounds for the generation level of the Hodge filtration can become
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worse. Moreover, it is not known whether the inclusions Ik(D) ⊆ Ik−1(D) continue
to hold for arbitrary Q-divisors. New phenomena appear as well: given two rational
numbers α1 < α2, usually the ideals Ik(α1 Z) and Ik(α2 Z) cannot be compared
for k ⩾ 1, unlike in the case of multiplier ideals.

We recall the following definition.

Definition 2.1. Let f, g ∈ R = C{x1, . . . , xn} which is the convergent power series
ring. We say f and g are contact equivalent if the local C-algebras R/( f ) and
R/(g) are isomorphic.

Definition 2.2. Let f : (Cn, 0) → (C, 0), n ≥ 2, be an isolated hypersurface
singularity. Let H = { f = 0} be an integral and reduced effective divisor defined
by f , Dα

= αH , α ∈ Q ∩ (0, 1]. We define the i-th Hodge moduli algebra of Dα

to be the moduli algebra of the ideal Ji (Dα) := ( f ) + Ii (Dα) (or Ji for short)

Mi (Dα) := C{x1, . . . , xn}/Ji (Dα)

for i ≥ 0 (or Mi for short), where Ii (Dα) is the i-th Hodge ideal (or Ii for short).
The i-th Hodge moduli number of Dα is defined to be

mi (Dα) := dimC(Mi (Dα))

for i ≥ 0 (or mi for short). We define the Hodge moduli sequence of D to be the
sequence

{mi } := {m0, m1, m2, . . . }.

Definition 2.3. A polynomial f ∈ C[x1, . . . , xn] is called weighted homogeneous
if there exists positive rational numbers w1, . . . , wn (that is, weights of x1, . . . , xn)
and d such that

∑
aiwi = d for each monomial

∏
xai

i appearing in f with a nonzero
coefficient. The number d is called the weighted homogeneous degree (w-deg) of f
for weights w j , 1 ≤ j ≤ n. These w j , 1 ≤ j ≤ n, are called the weight type of f .

The Hodge filtration F• of OX (∗D) is usually hard to describe. However, it does
have an explicit formula in the case when D is defined by a reduced weighted
homogeneous polynomial f which has an isolated singularity at the origin, which
is proved by M. Saito [13]. To state Saito’s result, we first clarify the notation as
follows.

• Denote by O= C{x1, . . . , xn} the ring of germs of holomorphic function for local
coordinates x1, . . . , xn.

• Denote by f : (Cn, 0) → (C, 0) a germ of a holomorphic function that is quasiho-
mogeneous, i.e., f ∈ J ( f ) =

(
∂ f
∂x1

, . . . ,
∂ f
∂xn

)
, and with an isolated singularity at the

origin. Kyoji Saito [11] showed that after a biholomorphic coordinate change, we
can assume f is a weighted homogeneous polynomial with an isolated singularity
at the origin. We will keep this assumption for f unless otherwise stated.
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• Denote by w = w( f ) = (w1, . . . , wn) the weights of the weighted homogeneous
polynomial f .

• Denote by g : (Cn, 0) → (C, 0) a germ of a holomorphic function, and we write

g =

∑
A∈Nn

gAx A,

where A = (a1, . . . , an), gA ∈ C and x A
= xa1

1 · · · xan
n .

• Denote by ρ(g) the weight of an element g ∈ O defined by

ρ(g) =

( m∑
i=1

wi

)
+ inf{⟨w, A⟩ : gA ̸= 0}.

The weight function ρ defines a filtration on O as

O>k
= {u ∈ O : ρ(u) > k},

O≥k
= {u ∈ O : ρ(u) ≥ k}.

Since we consider DX -modules locally around the isolated singularity, we can
assume X = Cn and identify the stalk at the singularity to be that of DX -modules
on Cn . For example, we replace FkOX,0(∗D) with FkOX (∗D). Now we can state
the formula proved by M. Saito (see [13, Theorem 0.7]):

FkOX (∗D) =

k∑
i=0

Fk−iDX

(
O≥i+1

f i+1

)
for all k ∈ N.(1)

Since the Hodge filtration can be constructed on analogous DX -modules associated
with any effective Q-divisor D, so it satisfies a similar formula in the case when D
is supported on a hypersurface defined by such a polynomial f .

Assume that the divisor is D =αZ , where 0<α ≤1 and Z = ( f =0) is an integral
and reduced effective divisor defined by f , a weighted homogeneous polynomial
with an isolated singularity at the origin. In this case, the associated DX -module is
the well-known twisted localization DX -module M( f 1−α) := OX (∗Z) f 1−α (see
more details in [7] about how to construct the Hodge filtration F•M( f 1−α)). With
new ingredients from Mustat,ă and Popa [8], where this Hodge filtration is compared
to the V -filtration on M( f 1−α), M. Zhang generalized Saito’s formula and proved
the following theorem:

Theorem 2.4 (Zhang, [18]). If D = αZ , where 0 < α ≤ 1 and Z = { f = 0} is
an integral and reduced effective divisor defined by f , a weighted homogeneous
polynomial with an isolated singularity at the origin, then we have

FkM( f 1−α) =

k∑
i=0

Fk−iDX

(
O≥α+i

f i+1 f 1−α

)
,
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where the action · of DX on the right-hand side is the action on the left DX -module
M( f 1−α) defined by

D · (w f 1−α) :=

(
D(w) + w

(1 − α)D( f )

f

)
f 1−α for any D ∈ DerC OX .

Notice that if we set α = 1, Theorem 2.4 recovers Saito’s formula (1) mentioned
above. For any polynomial f with an isolated singularity at the origin, it is well
known that the Milnor algebra

A f := C{x1, . . . , xn}/(∂1 f, . . . , ∂n f )

is a finite-dimensional C-vector space. Fix a monomial basis {v1, . . . , vµ} for this
vector space, where µ is the dimension of A f (i.e., Milnor number). The next
theorem follows from Theorem 2.4.

Theorem 2.5 (Zhang, [18]). If D = αZ , where 0 < α ≤ 1 and Z = { f = 0} is
an integral and reduced effective divisor defined by f , a weighted homogeneous
polynomial with an isolated singularity at the origin, then we have

F0M( f 1−α) = f −1
·O≥α f 1−α

and

FkM( f 1−α) =

(
f −1

·

∑
v j ∈O≥k+1+α

OX · v j

)
f 1−α

+ F1DX · Fk−1M( f 1−α).

Alternatively, in terms of Hodge ideals, these formulas say that

I0(D) = O≥α

and

Ik+1(D) =

∑
v j ∈O≥k+1+α

OX · v j +

∑
1≤i≤n,a∈Ik(D)

OX ( f ∂i a − (α + k)a∂i f ).

2.2. Delta invariant of curve singularities.

Definition 2.6 (δ-invariant). Let f ∈ C{x, y} be a reduced convergent power series,
and let

O = C{x, y}/⟨ f ⟩ ↪→ O

denote the normalization. Then we call

δ( f ) := dimC O/O
the δ-invariant of f .

Although we can explicitly calculate the δ-invariants of isolated quasihomoge-
neous singularities of three types F1, F2, F3, by blowing up singularities and using
the above theorem. We use Lemma 2.7, which is a very useful equality of the
Milnor number, the δ-invariant and the number of irreducible factors of a curve
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singularity { f = 0}, to show Lemmas 2.8, 2.9, and 2.10. And we only give proof
for Lemma 2.8 for simplicity, since the proofs for Lemmas 2.9 and 2.10 are similar.

Lemma 2.7 [2, Proposition 3.35]. Let f ∈ m ⊆ C{x, y} be reduced. Then

µ( f ) = 2δ( f ) − r( f ) + 1,

where µ( f ) is the Milnor number of f , δ( f ) is the δ-invariant of f and r( f ) is the
number of irreducible factors of f .

Lemma 2.8. For an isolated quasihomogeneous curve singularity of the form
D(a,b)

1 = {xa
+ yb

= 0}, defined by F (a,b)
1 = xa

+ yb, a, b ≥ 2, its δ-invariant is

δ1(a, b) =
(a − 1)(b − 1) + gcd(a, b) − 1

2
.

In particular, δ1(a, b) =
(a−1)(b−1)

2 , if gcd(a, b) = 1.

Proof. Since µ( f ) = (a − 1)(b − 1) and r( f ) = gcd(a, b),

δ1(a, b) =
µ( f ) + r( f ) − 1

2
=

(a − 1)(b − 1) + gcd(a, b) − 1
2

. □

Lemma 2.9. For an isolated quasihomogeneous curve singularity of the form
D(a,b)

2 ={xa
+xyb

= 0}, defined by F (a,b)
2 = xa

+xyb, a ≥ 2, b ≥ 1, its δ-invariant is

δ2(a, b) =
a(b − 1) + gcd(a − 1, b) + 1

2
.

In particular, δ2(a, b) =
a(b−1)+2

2 , if gcd(a − 1, b) = 1.

Lemma 2.10. For an isolated quasihomogeneous curve singularity of the form
D(a,b)

3 = {xa y + xyb
= 0}, defined by F (a,b)

3 = xa y + xyb, a, b ≥ 1, its δ-invariant is

δ3(a, b) =
ab + gcd(a − 1, b − 1) + 1

2
.

In particular, δ3(a, b) =
ab+2

2 , if gcd(a − 1, b − 1) = 1.

3. The first two Hodge ideals
of three types of isolated quasihomogeneous curve singularities

In this section, we compute Hodge ideals of three types of isolated quasihomo-
geneous curve singularities for α = 1 in Theorem 2.5. And OX = C{x, y} in
the following computation. The following lemma is used in the computation of
dimensions of Hodge moduli algebras.

Lemma 3.1. For n, m ∈ N, n, m ≥ 1,
n−1∑
i=1

[
mi
n

]
=

(m − 1)(n − 1) + gcd(m, n) − 1
2

,
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Consider isolated quasihomogeneous curve singularities D(a,b)
1 = {xa

+ yb
= 0},

defined by F (a,b)
1 = xa

+ yb. If a ≤ b, let r =
a

gcd(a,b)
; then 1 ≤ r ≤ a. Since

1+a−1
a +

1
b ≥ 1, we have xa−1

∈ I0(D1). And we have

xk−1 y[
b(a−k)

a ]
∈ I0(D1) for all 1 ≤ k ≤ a − 1, r ∤k,

and
x ir−1 yb−

ibr
a −1

∈ I0(D1) for all 1 ≤ i ≤ gcd(a, b) − 1.

So the 0-th Hodge ideal for D1 is

J0(D1) = I0(D1) =
(
xa−1, xa−2 y[

b
a ], . . . , xa−r y[

b(r−1)
a ],

. . . , x ir−1 yb−
ibr
a −1, x ir−2 y[

b(a−ir+1)
a ], . . . , x (i−1)r y[

b(a−(i−1)r−1)
a ],

. . . , xr−1 yb−
br
a −1, xr−2 y[

b(a−r+1)
a ], . . . , y[

b(a−1)
a ]

)
,

where 1 ≤ i ≤ gcd(a, b) − 1. Its multiplicity mt(J0(D1)) equals a − 1. Using
Lemma 3.1, we obtain the dimension of the 0-th Hodge moduli algebra M0(D1) =

OX/J0(D1):

m0(D1) =

a−1∑
i=1

[
bi
a

]
− (gcd(a, b) − 1)

=
(a−1)(b−1)+gcd(a, b)−1

2
− (gcd(a, b) − 1)

=
(a−1)(b−1)−gcd(a, b)+1

2
.

The 1-st Hodge ideal of D1 is

J1(D1) = ( f ) + I0(D1) · (J f )

=
(
xa

+ yb, xa−2 yb, xa−3 y[
b
a ]+b, . . . , xa−r−1 y[

b(r−1)
a ]+b,

. . . , x ir−2 y2b−
ibr
a −1, . . . , x (i−1)r−1 y[

b(a−(i−1)r−1)
a ]+b,

. . . , xr−2 y2b−
br
a −1, . . . , y[

b(a−2)
a ]+b, xa−1 y[

b(a−1)
a ]

)
,

where 2 ≤ i ≤ gcd(a, b). Its multiplicity mt(J1(D1)) equals a. By Lemma 3.1, the
dimension of the 1-st Hodge moduli algebra M1(D1) = OX/J1(D1) is

m1(D1) =

a−2∑
i=1

([
bi
a

]
+ b

)
− (gcd(a, b) − 1) + b +

[
b(a−1)

a

]
=

a−1∑
i=1

[
bi
a

]
+ (a − 1)b − (gcd(a, b) − 1)

=
(a−1)(b−1)+gcd(a, b)−1

2
+ (a − 1)b − (gcd(a, b) − 1)

=
(a−1)(3b−1)−gcd(a, b)+1

2
.
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If a ≥ b, let r =
b

gcd(a,b)
; then 1 ≤ r ≤ b. By symmetry of a, b, we obtain the 0-th

Hodge ideal for D1:

J0(D1) = I0(D1)

=
(
yb−1, yb−2x [

a
b ], . . . , yb−r x [

a(r−1)
b ],

. . . , yir−1xa−
iar
b −1, yir−2x [

a(b−ir+1)
b ], . . . , y(i−1)r x [

a(b−(i−1)r−1)
b ],

. . . , yr−1xa−
ar
b −1, yr−2x [

a(b−r+1)
b ], . . . , x [

a(b−1)
b ]

)
,

where 1≤ i ≤gcd(a, b)−1. Its multiplicity mt(J0(D1)) equals b−1. By Lemma 3.1,
the dimension of the 1-st Hodge moduli algebra M0(D1) = OX/J0(D1) is

m0(D1) =

b−1∑
i=1

[
ai
b

]
− (gcd(a, b) − 1)

=
(a − 1)(b − 1) + gcd(a, b) − 1

2
− (gcd(a, b) − 1)

=
(a − 1)(b − 1) − gcd(a, b) + 1

2
.

And the 1-st Hodge ideal for D1 is

J1(D1) = ( f ) + I0(D1) · (J f )

=
(
xa

+ yb, yb−2xa, yb−3x [
a
b ]+a, . . . , yb−r−1x [

a(r−1)
b ]+a,

. . . , yir−2x2a−
iar
b −1, . . . , y(i−1)r−1x [

a(b−(i−1)r−1)
b ]+a,

. . . , yr−2x2a−
ar
b −1, . . . , x [

a(b−2)
b ]+a, yb−1x [

a(b−1)
b ]

)
,

where 2 ≤ i ≤ gcd(a, b). Its multiplicity mt(J1(D1)) equals b. By Lemma 3.1, the
dimension of the 1-st Hodge moduli algebra M1(D1) = OX/J1(D1) is

m1(D1) =

b−2∑
i=1

([
ai
b

]
+ a

)
− (gcd(a, b) − 1) + a +

[
a(b − 1)

b

]

=

b−1∑
i=1

[
ai
b

]
+ (b − 1)a − (gcd(a, b) − 1)

=
(a − 1)(b − 1) + gcd(a, b) − 1

2
+ (b − 1)a − (gcd(a, b) − 1)

=
(3a − 1)(b − 1) − gcd(a, b) + 1

2
.

Consider isolated quasihomogeneous curve singularities D(a,b)
2 = {xa

+xyb
= 0},

defined by F (a,b)
2 = xa

+ xyb. If a − 1 ≤ b, let r =
a−1

gcd(a−1,b)
; then 1 ≤ r ≤ a − 1.
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Since 1+a−1
a +

a−1
ab ≥ 1, we have xa−1

∈ I0(D2). And we have

xk y[
b(a−k−1)

a−1 ]
∈ I0(D2) for all 1 ≤ k ≤ a − 1, r ∤k,

and
x ir yb−

ibr
a−1 −1

∈ I0(D2) for all 1 ≤ i ≤ gcd(a − 1, b) − 1.

Since 1
a +

(a−1)(1+b−1)
ab ≥1, we have yb−1

∈ I0(D2). So the 0-th Hodge ideal for D2 is

J0(D2) = I0(D2)

=
(
xa−1, xa−2 y[

b
a−1 ], . . . , xa−r y[

b(r−1)
a−1 ],

. . . , x ir yb−
ibr
a−1 −1, x ir−1 y[

b(a−ir)
a−1 ], . . . , x (i−1)r+1 y[

b(a−((i−1)r+1)−1)
a−1 ],

. . . , xr yb−
br

a−1 −1, xr−1 y[
b(a−r)

a−1 ], . . . , xy[
b(a−2)

a−1 ], yb−1),
where 1≤ i ≤gcd(a−1, b)−1. Its multiplicity mt(J0(D2)) equals a−1. The dimen-
sion of the 0-th Hodge moduli algebra M0(D2) = OX/J0(D2), by Lemma 3.1, is

m0(D2) =

a−2∑
i=1

[
bi

a − 1

]
− (gcd(a − 1, b) − 1) + b − 1

=
(a − 2)(b − 1) + gcd(a − 1, b) − 1

2
− (gcd(a, b) − 1) + b − 1

=
a(b − 1) − gcd(a − 1, b) + 1

2
.

And the 1-st Hodge ideal of D2 is

J1(D2) = ( f )+ I0(D2)·(J f )

=
(
xa

+xyb,axa−1 yb−1
+y2b−1xa−1 yb, xa−2 y[

b
a−1 ]+b, . . . , xa−r y[

b(r−1)
a−1 ]+b,

. . . , x ir y2b−
ibr
a−1 −1, . . . , x (i−1)r+1 y[

b(a−((i−1)r+1)−1)
a−1 ]+b,

. . . , xr y2b−
br

a−1 −1, . . . , xy[
b(a−2)

a−1 ]+b),
where 1≤ i ≤gcd(a−1, b)−1. Its multiplicity mt(J1(D2)) equals a. By Lemma 3.1,
the dimension of the 1-st Hodge moduli algebra M1(D2) = OX/J1(D2) is

m1(D2) = 2b−1+

a−2∑
i=1

([
bi

a−1

]
+b

)
−(gcd(a−1, b)−1)+b

=
(a−2)(b−1)+gcd(a−1, b)−1

2
+(a−2)b+3b−1−(gcd(a−1, b)−1)

=
a(3b−1)−gcd(a−1, b)+1

2
.
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If a − 1 ≥ b, let r =
b

gcd(a−1,b)
; then 1 ≤ r ≤ b. Since 1

a +
(a−1)(1+b−1)

ab ≥ 1, we
have yb−1

∈ I0(D2). And we have

x [
(a−1)(b−k)

b ]+1 yk−1
∈ I0(D2) for all 1 ≤ k ≤ b, r ∤k,

and
xa−1−

i(a−1)r
b ∈ I0(D2) for all 1 ≤ i ≤ gcd(a − 1, b).

So the 0-th Hodge ideal for D2 is

J0(D2) = I0(D2)

=
(
x [

(a−1)(b−1)
b ]+1,x [

(a−1)(b−2)
b ]+1 y, . . . ,xa−1−

(a−1)r
b yr−1, . . . ,

x [
(a−1)(b−(i−1)r−1)

b ]+1 y(i−1)r ,x [
(a−1)(b−(i−1)r−2)

b ]+1 y(i−1)r+1, . . . ,xa−1−
i(a−1)r

b yir−1,

. . . ,x [
(a−1)(r−1)

b ]+1 yb−r ,x [
(a−1)(r−2)

b ]+1 yb−r+1, . . . , yb−1),
where 1≤ i ≤gcd(a−1, b). Its multiplicity mt(J0(D2)) equals b−1. By Lemma 3.1,
the dimension of the 0-th Hodge moduli algebra M0(D2) = OX/J0(D2) is

m0(D2) =

b−1∑
i=1

([
(a − 1)i

b

]
+ 1

)
− (gcd(a − 1, b) − 1)

=
(a − 2)(b − 1) + gcd(a − 1, b) − 1

2
+ b − 1 − (gcd(a − 1, b) − 1)

=
a(b − 1) − gcd(a − 1, b) + 1

2
.

And the 1-st Hodge ideal of D2 is

J1(D2) = ( f )+ I0(D2)·(J f )

=
(
xa

+xyb, axa−1 yb−1
+y2b−1, x [

(a−1)(b−1)
b ]+2 yb−1, x [

(a−1)(b−2)
b ]+2 yb, . . . ,

xa−
(a−1)r

b yb+r−2, . . . , x [
(a−1)(b−(i−1)r−1)

b ]+2 yb+(i−1)r−1,

x [
(a−1)(b−(i−1)r−2)

b ]+2 yb+(i−1)r , . . . , xa−
i(a−1)r

b yb+ir−2, . . . ,

x [
(a−1)(r−1)

b ]+2 y2b−r−1, x [
(a−1)(r−2)

b ]+2 y2b−r , . . . , xy2b−2),
where 1≤ i ≤gcd(a−1, b). Its multiplicity mt(J1(D2)) equals b+1. By Lemma 3.1,
the dimension of the 1-st Hodge moduli algebra M1(D2) = OX/J1(D2) is

m1(D2) = a(b−1)+

b−1∑
i=1

([
(a−1)i

b

]
+2

)
−(gcd(a−1, b)−1)+1

= (a+2)(b−1)+
(a−2)(b−1)+gcd(a−1, b)−1

2
−(gcd(a−1, b)−1)+1

=
(3a+2)(b−1)−gcd(a−1, b)+3

2
.
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Consider isolated quasihomogeneous curve singularities D(a,b)
3 ={xa y+xyb

=0},
defined by F (a,b)

3 = xa y + xyb. If a ≤ b, let r =
a−1

gcd(a−1,b−1)
; then 1 ≤ r ≤ a − 1.

Since
(b − 1)(1 + a − 1)

ab − 1
+

a − 1
ab − 1

≥ 1,

we have xa−1
∈ I0(D3). And we have

xk y[
(b−1)(a−1−k)

a−1 ]+1
∈ I0(D3) for all 1 ≤ k ≤ a − 2, r ∤k,

and
x ir yb−1−

i(b−1)r
a−1 ∈ I0(D3) for all 1 ≤ i ≤ gcd(a − 1, b − 1) − 1.

So the 0-th Hodge ideal for D3 is

J0(D3) = I0(D3)

=
(
xa−1, xa−2 y[

b−1
a−1 ]+1, . . . , xa−r y[

(b−1)(r−1)
a−1 ]+1, . . . ,

x ir yb−1−
i(b−1)r

a−1 , x ir−1 y[
(b−1)(a−ir)

a−1 ]+1, . . . , x (i−1)r+1 y[
(b−1)(a−1−(i−1)r−1)

a−1 ]+1,

. . . , xr yb−1−
(b−1)r

a−1 , xr−1 y[
(b−1)(a−r)

a−1 ]+1, . . . , xy[
(b−1)(a−2)

a−1 ]+1, yb−1),
where 1≤ i ≤gcd(a−1, b−1). Its multiplicity mt(J0(D3)) equals a−1. The dimen-
sion of the 0-th Hodge moduli algebra M0(D3) = OX/J0(D3), by Lemma 3.1, is

m0(D3) =

a−2∑
i=1

([
(b − 1)i

a − 1

]
+ 1

)
− (gcd(a − 1, b − 1) − 1) + b − 1

=
ab − gcd(a − 1, b − 1) − 1

2
.

And the 1-st Hodge ideal of D3 is

J1(D3) = ( f ) + I0(D3) · (J f )

=
(
xa y + xyb, x2a−1, y2b−1x2a−2 y, . . . , x2a−r−1 y[

(b−1)(r−1)
a−1 ]+2,

. . . , xa−1+ir yb−
i(b−1)r

a−1 , . . . , xa+(i−1)r y[
(b−1)(a−1−(i−1)r−1)

a−1 ]+2,

. . . , xa−1+r yb−
(b−1)r

a−1 , . . . , xa y[
(b−1)(a−2)

a−1 ]+2),
where 1≤ i ≤gcd(a−1, b−1). Its multiplicity mt(J1(D3)) equals a+1. The dimen-
sion of the 1-st Hodge moduli algebra M1(D3) = OX/J1(D3), by Lemma 3.1, is

m1(D3) = (2b−1)+(a−2)b+b+

a−2∑
i=1

([
(b−1)i

a−1

]
+2

)
−(gcd(a−1, b−1)−1)+1

=
a(3b+2)−gcd(a−1, b−1)−3

2
.
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If a ≥ b, let r =
b−1

gcd(a−1,b−1)
; then 1 ≤ r ≤ b − 1. By symmetry of a, b, we obtain

the 0-th Hodge ideal

J0(D3) = I0(D3)

=
(
yb−1, yb−2x [

a−1
b−1 ]+1, . . . , yb−r x [

(a−1)(r−1)
b−1 ]+1, . . . ,

yir xa−1−
i(a−1)r

b−1 , yir−1x [
(a−1)(b−ir)

b−1 ]+1, . . . , y(i−1)r+1x [
(a−1)(b−1−(i−1)r−1)

b−1 ]+1,

. . . , yr xa−1−
(a−1)r

b−1 , yr−1x [
(a−1)(b−r)

b−1 ]+1, . . . , yx [
(a−1)(b−2)

b−1 ]+1, xa−1),
where 1 ≤ i ≤gcd(a−1, b−1). Its multiplicity mt(J0(D3)) equals b−1. The dimen-
sion of the 0-th Hodge moduli algebra M0(D3) = OX/J0(D3), by Lemma 3.1, is

m0(D3) =

b−2∑
i=1

([
(a − 1)i

b − 1

]
+ 1

)
− (gcd(a − 1, b − 1) − 1) + a − 1

=
ab − gcd(a − 1, b − 1) − 1

2
.

And the 1-st Hodge ideal of D3 is

J1(D3) = ( f ) + I0(D3) · (J f )

=
(
xa y + xyb, x2a−1, y2b−1 y2b−2x, . . . , y2b−r−1x [

(a−1)(r−1)
b−1 ]+2,

. . . , yb−1+ir xa−
i(a−1)r

b−1 , . . . , yb+(i−1)r x [
(a−1)(b−1−(i−1)r−1)

b−1 ]+2,

. . . , yb−1+r xa−
(a−1)r

b−1 , . . . , yax [
(a−1)(b−2)

b−1 ]+2),
where 1 ≤ i ≤gcd(a−1, b−1). Its multiplicity mt(J1(D3)) equals b+1. The dimen-
sion of the 1-st Hodge moduli algebra M0(D3) = OX/J1(D3), by Lemma 3.1, is

m1(D3) = (2a−1)+(b−2)a+a+

b−2∑
i=1

([
(a−1)i

b−1

]
+2

)
−(gcd(a−1, b−1)−1)+1

=
(3a+2)b−gcd(a−1, b−1)−3

2
.

4. Proof of Main Theorem A

I. We compare singularities of types F1 and F2:

(1) Suppose for singularities

D1 = {xa1 + yb1 = 0}, 2 ≤ a1 ≤ b1,

D2 = {xa2 + xyb2 = 0}, 1 ≤ a2 − 1 ≤ b2,

their 0-th and 1-st Hodge moduli algebras are isomorphic, i.e.,

M0(D1) ≃ M0(D2), M1(D1) ≃ M1(D2).
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By our computation in Section 3 we have

mt(J0(D1)) = a1 − 1,

mt(J1(D1)) = a1,

m0(D1) =
(a1 − 1)(b1 − 1) − gcd(a1, b1) + 1

2
,

m1(D1) =
(a1 − 1)(3b1 − 1) − gcd(a1, b1) + 1

2
.

And
mt(J0(D2)) = a2 − 1,

mt(J1(D2)) = a2,

m0(D2) =
a2(b2 − 1) − gcd(a2 − 1, b2) + 1

2
,

m1(D2) =
a2(3b2 − 1) − gcd(a2 − 1, b2) + 1

2
.

Hence we obtain the equations

a1 − 1 = a2 − 1,

a1 = a2,

(a1 − 1)(b1 − 1) − gcd(a1, b1) + 1
2

=
a2(b2 − 1) − gcd(a2 − 1, b2) + 1

2
,

(a1 − 1)(3b1 − 1) − gcd(a1, b1) + 1
2

=
a2(3b2 − 1) − gcd(a2 − 1, b2) + 1

2
,

that is,
a1 = a2,

(a1 − 1)b1 = a2b2,

gcd(a1, b1) − gcd(a2 − 1, b2) = a2 − (a1 − 1).

Its solutions are (a1, b1) = (a2, a2m), (a2, b2) = (a2, (a2 − 1)m), where a2, m ∈ N,
a2 ≥ 2, m ≥ 1. And we have

wt(F1) =

{
1
a1

,
1
b1

}
=

{
1
a2

,
1

a2m

}
,

wt(F2) =

{
1
a2

,
a2 − 1
a2b2

}
=

{
1
a2

,
1

a2m

}
.

It follows that wt(F1) = wt(F2). Under these conditions, we obtain

J0(D1) = (xa2−1, xa2−2 ym−1, . . . , y(a2−1)m−1),

J0(D2) = (xa2−1, xa2−2 ym−1, . . . , y(a2−1)m−1),

i.e., J0(D1) = J0(D2), which shows M0(D1) ≃ M0(D2) directly.
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(2) Suppose for singularities

D1 = {xa1 + yb1 = 0}, 2 ≤ a1 ≤ b1,

D2 = {xa2 + xyb2 = 0}, a2 − 1 ≥ b2 ≥ 1,

their 0-th and 1-st Hodge moduli algebras are isomorphic, i.e.,

M0(D1) ≃ M0(D2), M1(D1) ≃ M1(D2).

By our computation in Section 3, we have

mt(J0(D1)) = a1 − 1,

mt(J1(D1)) = a1,

m0(D1) =
(a1 − 1)(b1 − 1) − gcd(a1, b1) + 1

2
,

m1(D1) =
(a1 − 1)(3b1 − 1) − gcd(a1, b1) + 1

2
.

And
mt(J0(D2)) = b2 − 1,

mt(J1(D2)) = b2 + 1,

m0(D2) =
a2(b2 − 1) − gcd(a2 − 1, b2) + 1

2
,

m1(D2) =
(3a2 + 2)(b2 − 1) − gcd(a2 − 1, b2) + 3

2
.

Hence we obtain the equations

a1 − 1 = b2 − 1,

a1 = b2 + 1,

(a1 − 1)(b1 − 1) − gcd(a1, b1) + 1
2

=
a2(b2 − 1) − gcd(a2 − 1, b2) + 1

2
,

(a1 − 1)(3b1 − 1) − gcd(a1, b1) + 1
2

=
(3a2 + 2)(b2 − 1) − gcd(a2 − 1, b2) + 3

2
.

It has no solution.

II. We compare singularities of types F2 and F3:

(1) Suppose for singularities

D2 = {xa2 + xyb2 = 0}, a2 − 1 ≥ b2 ≥ 1,

D3 = {xa3 y + xyb3 = 0}, 1 ≤ a3 ≤ b3,

their 0-th and 1-st Hodge moduli algebras are isomorphic, i.e.,

M0(D2) ≃ M0(D3), M1(D2) ≃ M1(D3)
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By our computation in Section 3, we have

mt(J0(D2)) = b2 − 1,

mt(J1(D2)) = b2 + 1,

m0(D2) =
a2(b2 − 1) − gcd(a2 − 1, b2) + 1

2
,

m1(D2) =
(3a2 + 2)(b2 − 1) − gcd(a2 − 1, b2) + 3

2
.

And
mt(J0(D3)) = a3 − 1,

mt(J1(D3)) = a3 + 1,

m0(D3) =
a3b3 − gcd(a3 − 1, b3 − 1) − 1

2
,

m1(D3) =
a3(3b3 + 2) − gcd(a3 − 1, b3 − 1) − 3

2
.

Hence we obtain the equations

b2 −1 = a3 −1,

b2 +1 = a3 +1,

a2(b2 −1)−gcd(a2 −1, b2)+1
2

=
a3b3 −gcd(a3 −1, b3 −1)−1

2
,

(3a2 +2)(b2 −1)−gcd(a2 −1, b2)+3
2

=
a3(3b3 +2)−gcd(a3 −1, b3 −1)−3

2
,

that is,
b2 = a3,

a2b2 + b2 − a2 = a3b3 + a3 − 1,

gcd(a2 − 1, b2) − gcd(a3 − 1, b3 − 1) = a3 − (b2 − 1).

Its solutions are (a2, b2) = (mb2 + 1, b2), (a3, b3) = (b2, m(b2 − 1) + 1), where
b2, m ∈ N, b2 ≥ 2, m ≥ 1. And we have

wt(F2) =

{
1
a2

,
a2 − 1
a2b2

}
=

{
1

mb2 + 1
,

m
mb2 + 1

}
,

wt(F3) =

{
b3 − 1

a3b3 − 1
,

a3 − 1
a3b3 − 1

}
=

{
m

mb2 + 1
,

1
mb2 + 1

}
.

It follows that wt(F2) = wt(F3). Under these conditions, we obtain

J0(D2) = (xm(b2−1), xm(b2−2)y, . . . , yb2−1),

J0(D3) = (ym(b2−1), ym(b2−2)x, . . . , xb2−1),

i.e., J0(D2) ∼= J0(D3), x 7→ y, which shows M0(D2) ∼= M0(D3) directly.
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(2) Suppose for singularities

D2 = {xa2 + xyb2 = 0}, 1 ≤ a2 − 1 ≤ b2,

D3 = {xa3 y + xyb3 = 0}, 1 ≤ a3 ≤ b3,

their 0-th and 1-st Hodge moduli algebras are isomorphic, i.e.,

M0(D2) ≃ M0(D3), M1(D2) ≃ M1(D3)

By our computation in Section 3, we have

mt(J0(D2)) = a2 − 1,

mt(J1(D2)) = a2,

m0(D2) =
a2(b2 − 1) − gcd(a2 − 1, b2) + 1

2
,

m1(D2) =
a2(3b2 − 1) − gcd(a2 − 1, b2) + 1

2
.

And
mt(J0(D3)) = a3 − 1,

mt(J1(D3)) = a3 + 1,

m0(D3) =
a3b3 − gcd(a3 − 1, b3 − 1) − 1

2
,

m1(D3) =
a3(3b3 + 2) − gcd(a3 − 1, b3 − 1) − 3

2
.

Hence we obtain the equations

a2 − 1 = a3 − 1,

a2 = a3 + 1,

a2(b2 − 1) − gcd(a2 − 1, b2) + 1
2

=
a3b3 − gcd(a3 − 1, b3 − 1) − 1

2
,

a2(3b2 − 1) − gcd(a2 − 1, b2) + 1
2

=
a3(3b3 + 2) − gcd(a3 − 1, b3 − 1) − 3

2
.

It has no solution.

III. We compare singularities of types F1 and F3:

(1) Suppose for singularities

D1 = {xa1 + yb1 = 0}, 2 ≤ a1 ≤ b1,

D3 = {xa3 y + xyb3 = 0}, 1 ≤ a3 ≤ b3,

their 0-th and 1-st Hodge moduli algebras are isomorphic, i.e.,

M0(D1) ≃ M0(D3), M1(D1) ≃ M1(D3)
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By our computation in Section 3, we have

mt(J0(D1)) = a1 − 1,

mt(J1(D1)) = a1,

m0(D1) =
(a1 − 1)(b1 − 1) − gcd(a1, b1) + 1

2
,

m1(D1) =
(a1 − 1)(3b1 − 1) − gcd(a1, b1) + 1

2
.

And
mt(J0(D3)) = a3 − 1,

mt(J1(D3)) = a3 + 1,

m0(D3) =
a3b3 − gcd(a3 − 1, b3 − 1) − 1

2
,

m1(D3) =
a3(3b3 + 2) − gcd(a3 − 1, b3 − 1) − 3

2
.

Hence we obtain the equations

a1 − 1 = a3 − 1,

a1 = a3 + 1,

(a1 − 1)(b1 − 1) − gcd(a1, b1) + 1
2

=
a3b3 − gcd(a3 − 1, b3 − 1) − 1

2
,

(a1 − 1)(3b1 − 1) − gcd(a1, b1) + 1
2

=
a3(3b3 + 2) − gcd(a3 − 1, b3 − 1) − 3

2
.

It has no solutions.

(2) Suppose for singularities

D1 = {xa1 + yb1 = 0}, 2 ≤ a1 ≤ b1,

D3 = {xa3 y + xyb3 = 0}, a3 ≥ b3 ≥ 1,

their 0-th and 1-st Hodge moduli algebras are isomorphic, i.e.,

M0(D1) ≃ M0(D3), M1(D1) ≃ M1(D3)

By our computation in Section 3, we have

mt(J0(D1)) = a1 − 1,

mt(J1(D1)) = a1,

m0(D1) =
(a1 − 1)(b1 − 1) − gcd(a1, b1) + 1

2
,

m1(D1) =
(a1 − 1)(3b1 − 1) − gcd(a1, b1) + 1

2
.
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And
mt(J0(D3)) = b3 − 1,

mt(J1(D3)) = b3 + 1,

m0(D3) =
a3b3−gcd(a3−1, b3−1)−1

2
,

m1(D3) =
(3a3+2)b3−gcd(a3−1, b3−1)−3

2
.

Hence we obtain the equations

a1 − 1 = b3 − 1,

a1 = b3 + 1,

(a1−1)(b1−1)−gcd(a1, b1)+1
2

=
a3b3−gcd(a3−1, b3−1)−1

2
,

(a1−1)(3b1−1)−gcd(a1, b1)+1
2

=
(3a3+2)b3−gcd(a3−1, b3−1)−3

2
.

It has no solution.

5. Proof of Main Theorem B

(1) For isolated quasihomogeneous curve singularity

D(a,b)
1 = {xa

+ yb
= 0}, a, b ≥ 2,

since the 0-th Hodge moduli number is

m0(D(a,b)
1 ) =

(a−1)(b−1)−gcd(a, b)+1
2

,

we have
δ1(a, b) − m0(D(a,b)

1 ) = gcd(a, b) − 1 ≥ 0.

And we also have

δ1(a, b) − m0(D(a,b)
1 ) = gcd(a, b) − 1 ≤ min{a, b} − 1 = mt(D(a,b)

1 ) − 1.

The equality holds if and only if min{a, b} = gcd(a, b), i.e., (a, b) = (a, am) or
(a, b) = (bm′, b) for some m, m′

∈ N.

(2) For isolated quasihomogeneous curve singularity

D(a,b)
2 = {xa

+ xyb
= 0}, a ≥ 2, b ≥ 1,

since the 0-th Hodge moduli number is

m0(D(a,b)
2 ) =

a(b−1)−gcd(a−1, b)+1
2

,

we have
δ2(a, b) − m0(D(a,b)

2 ) = gcd(a − 1, b) ≥ 1.
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And we also have

δ2(a, b) − m0(D(a,b)
2 ) = gcd(a − 1, b) ≤ min{a − 1, b} = mt(D(a,b)

2 ) − 1.

The equality holds if and only if min{a − 1, b} = gcd(a − 1, b), i.e., (a, b) =

(a, (a − 1)m) or (a, b) = (bm′
+ 1, b) for some m, m′

∈ N.

(3) For isolated quasihomogeneous curve singularity

D(a,b)
3 = {xa y + xyb

= 0}, a, b ≥ 1,

since the 0-th Hodge moduli number is

m0(D(a,b)
3 ) =

ab−gcd(a−1, b−1)+1
2

,

we have
δ3(a, b) − m0(D(a,b)

3 ) = gcd(a − 1, b − 1) + 1 ≥ 2.

And we also have

δ3(a, b) − m0(D(a,b)
3 ) = gcd(a − 1, b − 1) + 1 ≤ min{a − 1, b − 1} + 1

= min{a, b} = mt(D(a,b)
3 ) − 1.

The equality holds if and only if min{a − 1, b − 1} = gcd(a − 1, b − 1), i.e.,
(a, b) = (a, (a − 1)m + 1) or (a, b) = ((b − 1)m′

+ 1, b) for some m, m′
∈ N.

6. Some examples and conjectures

Example 6.1. Let curve singularities H1 = {x2 y + xy6
= 0} be defined by a

polynomial f (x, y) = x2 y + xy6 and H2 = {x3 y + xy4
= 0} be defined by a

polynomial g(x, y) = x3 y + xy4. Then f is quasihomogeneous of weight type( 5
11 , 1

11 ; 1
)

and g is quasihomogeneous of weight type
( 3

11 , 2
11 ; 1

)
. In [16], the

characteristic polynomials of f and g coincide:

1 f (t) = (t − 1)(t11
− 1) = 1g(t).

So this tells us that the characteristic polynomial does not determine the weights of
the nondegenerate quasihomogeneous polynomial defining the singularity.

However, their i-th Hodge moduli algebras Mi (Dα) are not isomorphic for
i ≥ i0(α), for a big enough i0(α). Precisely speaking,

Mi (Dα
1 ) ̸≃ Mi (Dα

2 ) for all i ≥ 1,

where Dα
j = αH j , j = 1, 2, for α = 1. In fact, we just simply observe this result by

their Hodge moduli numbers are different for i ≥ 1 as follows:

singularity weight type m0(D) m1(D) m2(D) m3(D) m4(D) m5(D)

x2 y + xy6
( 5

11 , 1
11 ; 1

)
5 18 32 46 60 74

x3 y + xy4
( 3

11 , 2
11 ; 1

)
5 19 39 49 64 79
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Example 6.2. Let f (z1, . . . , zn, w1, w2)= z2
1+· · · +z2

n+w3
1+w

2p
2 be a quasihomo-

geneous polynomial of weight type
( 1

2 , . . . , 1
2 , 1

3 , 1
2p ; 1

)
with an isolated singularity

at the origin for any p ∈ N. Let n ≥ 0, even and gcd(3, p) = 1. Then we know
their characteristic polynomials are

1 f (t) =
t4p

+t2p
+1

t2+t+1
for all n ≥ 0, even.

Hence 1 f (1)=1. By Theorem 8.5 in [4], each of their links K f = Sϵ∩{ f (z, w)=0}

is a topological sphere. Thus all K f for all p, (3, p) = 1, are homeomorphic to
each other though f (z1, . . . , zn, w1, w2) are of the different quasihomogeneous
types for all p.

However, their i-th Hodge moduli algebras Mi (Dα) are not isomorphic for all
i ≥ 1 and n ≥ 2, where Dα

= { f (z1, . . . , zn, w1, w2) = 0} for α = 1. In fact, we
have their 0-th Hodge ideal

I0(D) =

{
(1) if n ≥ 2, or n = 0, p = 1, 2,

(w1, w
i0
2 ) if n = 0, p ≥ 4,

where i0 =
⌈ 4p

3

⌉
− 1, is the smallest integer bigger than or equal to 4p

3 − 1. Then
we compute their 1-st Hodge ideal as follows. For example, if n = 2, we have

I (2)
1 (D) =

∑
v j ∈O≥2

OX · v j +
∑

1≤i≤4
a∈I0(D)

OX ( f ∂i a − αa∂i f )

= (w
i1
2 , w1w

j1
2 ) + (z1, z2, w

2
1, w

2p−1
2 )

= (z1, z2, w
2
1, w1w

j1
2 , w

i1
2 ),

J (2)
1 (D) = ( f ) + I (2)

1 (D)

= (z1, z2, w
2
1, w1w

j1
2 , w

i1
2 ),

where i1 =
⌈ 4p

3

⌉
− 1 and j1 =

⌈2p
3

⌉
− 1. And if n = 4, we have

I (4)
1 (D) =

∑
v j ∈O≥2

OX · v j +
∑

1≤i≤6
a∈I0(D)

OX ( f ∂i a − αa∂i f )

= (z1, z2, z3, z4, w
2
1, w

2p−1
2 ),

J (4)
1 (D) = ( f ) + I (4)

1 (D)

= (z1, z2, z3, z4, w
2
1, w

2p−1
2 ).

So we obtain their corresponding Hodge moduli algebras

M (2)
1 (D) = C{z1, z2, w1, w2}/I (2)

1 (D) = C{w1, w2}/(w
2
1, w1w

j1
2 , w

i1
2 ),

M (4)
2 (D) = C{z1, z2, z3, z4, w1, w2}/I (4)

1 (D) = C{w1, w2}/(w
2
1, w

2p−1
2 ),



WEIGHTS OF CURVE SINGULARITIES ARE DETERMINED BY HODGE IDEALS 373

which are not isomorphic obviously, since one can verify

dimC M (2)
1 (D) = i1 + j1 < 2(2p − 1) = dimC M (4)

1 (D).

Thus these examples imply that Hodge moduli algebras and Hodge moduli
numbers (or the Hodge moduli sequence) are better invariants than the charac-
teristic polynomial (a topological invariant of the singularity) for nondegenerate
quasihomogeneous singularities.

It is an interesting question interesting whether Hodge numbers, Hodge ideals and
Hodge moduli algebras of singularities remain constant or isomorphic under some
deformations, like quasihomogeneous or semiquasihomogeneous deformations (or,
more generally, µ-constant deformations). We give an example to explain that
the Hodge moduli numbers of isolated singularities may remain constant under
quasihomogeneous deformation.

Example 6.3. For quasihomogeneous polynomial

f = x2
+ y4

of weight wt( f ) =
( 1

2 , 1
4 ; 1

)
, let divisor Dα

1 = { f = 0}, where α = 1. Then its 1-st
Hodge ideal and Hodge moduli algebra are

J1(D1) = (x2, xy, y4),

M1(D1) = C{x, y}/(x2, xy, y4).

And for quasihomogeneous polynomial g = x2
+ y4

+ xy2 of weight wt(g) =( 1
2 , 1

4 ; 1
)
, which is a quasihomogeneous deformation of f , let divisor Dα

2 ={g = 0},

where α = 1. Then its 1-st Hodge ideal and Hodge moduli algebra are

J1(D2) = (x2, xy2, 2xy + y3, y4),

M1(D2) = C{x, y}/(x2, xy2, 2xy + y3, y4).

As C-vector spaces, M1(D1) and M1(D2) have the same the C-basis:

1, x, y, y2, y3.

Thus, the Hodge moduli numbers of D1 and D2 are the same.

So we raise a conjecture from the above example.

Conjecture 6.4. Suppose Fi is one of the three types1 of quasihomogeneous polyno-
mial in C2, 1 ≤ i ≤ 3. Let Hi,t = Fi + tGi be a semiquasihomogeneous deformation
of Fi , t ∈ C, 1 ≤ i ≤ 3. Then the k-th Hodge moduli algebras of the divisors
Dα

H = {Hi,t = 0} for α = 1, and Dα
F = {Fi = 0} for α = 1, have the same basis

1See pages 351–352 in the introduction.
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over C for all k ≥ 0. Hence, their dimensions, i.e., their k-th Hodge moduli numbers,
are the same,

mk(Dα
H ) = mk(Dα

F ) ∀k ≥ 0, ∀1 ≤ i ≤ 3, ∀t ∈ C.

And we can also ask whether the inequalities in Main Theorem B can be extended
to more general singularities. Suppose Fi is one of the three types of quasiho-
mogeneous curve singularities, 1 ≤ i ≤ 3. Consider a µ-constant deformation
Hi,t = Fi + tGi of Fi , t ∈ C. If we furthermore assume Hi,t is reduced, i.e., all
distinct irreducible factors of Hi,t have multiplicity 1, we have

µ(Hi,t) = µ(Fi ),

r(Hi,t) ≤ r(Fi ).

By Lemma 2.7, we have
δ(Hi,t) ≤ δ(Fi ),

where µ, δ and r are the same notation as in Lemma 2.7. So we have a corollary:

Corollary 6.5. Suppose the above Conjecture 6.4 is true. For a semiquasihomoge-
neous deformation Hi,t , t ∈ C, of Fi , we have

δ(Di,t) − m0(Di,t) ≤ mt(Di,t),

for any t ∈C such that Hi,t is a reduced polynomial, 1≤ i ≤3, where Di,t ={Hi,t =0}

is the corresponding singularity, δ(Di,t) is the δ-invariant of Di,t , m0(Di,t) is the
0-th Hodge moduli number of Di,t , and mt(Di,t) is the multiplicity of Di,t .

Proof. In fact, one can verify the multiplicity of Fi is not decreasing under the
above semiquasihomogeneous deformation for all 1 ≤ i ≤ 3, i.e.,

mt(Di,t) ≥ mt(Di,0)

for any t ∈C such that Hi,t is a reduced polynomial, 1≤ i ≤3. And by Conjecture 6.4,
we have

m0(Di,t) = m0(Di,0)

for any t ∈ C such that Hi,t is a reduced polynomial, 1 ≤ i ≤ 3. Finally, by the
discussion after Conjecture 6.4, we have

δ(Di,t) ≤ δ(Di,0)

for any t ∈ C such that Hi,t is a reduced polynomial, 1 ≤ i ≤ 3. So we have

δ(Di,t) − m0(Di,t) ≤ δ(Di,0) − m0(Di,0) ≤ mt(Di,0) ≤ mt(Di,t),

for any t ∈ C such that Hi,t is a reduced polynomial, 1 ≤ i ≤ 3. □
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