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Abstract. The well-known Nakai Conjecture concerns a very natural question: For an alge-

braic variety, how does the differential operators of its coordinate ring imply the smoothness of

it? It has been shown that all higher derivations of a smooth complex variety can be generated

by the first order derivations, and Nakai proposed the converse question: if the algebra of differ-

ential operators is generated by the first order derivations, is the variety smooth? In this paper,

we verify the Nakai Conjecture for weighted homogeneous fewnomial isolated singularities and

hypersurface cusp singularities, this extends the existing works.
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1. Introduction

In this paper we always assume that k is a field of characteristic zero. Let A be a finitely

generated k-algebra. Let Diffq
k(A) be the set of all q-th order differential operators on A over

k, Derqk(A) be the set of all q-th order derivations on A over k. It is known that Diffq
k(A) =

Derqk(A)⊕A, and there exist two natural filtrations A = Diff0
k(A) ⊂ Diff1

k(A) ⊂ Diff2
k(A) ⊂ · · · ,

0 = Der0k(A) ⊂ Der1k(A) ⊂ Der2k(A) ⊂ · · · . Moreover, the compositions of differential operators

and derivations satisfy Diffp
k(A)Diffq

k(A) ⊂ Diffp+q
k (A), Derpk(A)Derqk(A) ⊂ Derp+q

k (A), the Lie

brackets(commutators) of differential operators and derivations satisfy [Diffp
k(A),Diffq

k(A)] ⊂
Diffp+q−1

k (A), [Derpk(A), Derqk(A)] ⊂ Derp+q−1
k (A) ([12]).

LetDerk(A) = ∪
q∈N

Derqk(A), Diffk(A) = ∪
q∈N

Diffq
k(A), and denote by derqk(A) theA-submodule

of Derqk(A) which consists of A-linear combinations of derivations of the form δ1δ2 · · · δj , 1 ≤
j ≤ q, δi ∈ Der1k(A),∀i, and denote by derk(A) the A-submodule of Derk(A) generated by the

compositions of elements in Der1k(A). It is clear that derk(A) = ∪
q∈N

derqk(A), but derqk(A) =

derk(A)∩Derqk(A) does not necessarily hold. For simplicity, we omit the subscript k from now

on.

Grothendieck [8] showed that Der(A) is generated by Der1(A) when A is regular. Nakai

conjectured that the converse is also true, it seems that he had not quoted the conjecture

rigorously in [12], but his conjecture is often quoted in connection with his paper [12]. Since

der(A) = Der(A) may not be the same as derq(A) = Derq(A),∀q in general, his conjecture had

different statements in previous works (see [4],[11],[17]). In this paper we deal with the following

version:

Conjecture 1.1 (Nakai [4] [12]). Let k be a field of characteristic zero and A be a finitely

generated k-algebra, if derq(A) = Derq(A) for each integer q ≥ 1, then A is regular.
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It has been proved by Becker [1] and Rego [13] that the Nakai Conjecture implies the well-

known long-standing Zariski-Lipman conjecture, which asserts that if Der1(A) is A-projective,

then A is regular.

The Nakai Conjecture has been proved for several cases and is still open in general cases.

It is known to be true for algebraic curves [11], the case of monomial ideals [15], the case of

hypersurface with two variables [16], the case where A is the invariant subring of k[x1, · · · , xn]
by a finite subgroup of GL(n, k) [20], the case of a cone on a Riemann surface of genus > 1

and other special cases ([3], [4], [17]). Moreover, Singh [16] conjectured that when A is the

coordinate ring of a hypersurface, if Der2(A) = der2(A) where A is the coordinate ring, then A

is regular. This is the Singh Conjecture and it is obvious that the Singh Conjecture implies the

Nakai Conjecture for hypersurface case.

For homogeneous hypersurface case, Der(A) has been considered more concretely. Bernštĕin,

Gel’fand, and Gel’fand [2] analyzed A = k[x, y, z]/(x3+ y3+ z3), which is the coordinate ring of

the cubic cone, showing that Der(A) is not generated by any bounded order derivations. When

A = k[x, y, z]/(f), where (V (f), 0) is a homogeneous isolated hypersurface singularity, Vigué

[18] showed that Der(A) is not generated by any bounded order derivations when deg(f) ≥ 3.

Moreover, in [7], the authors studied the explicit generators of Der2(A) and Der3(A), which

imply the Nakai Conjecture. However, their methods are very hard to be generalized to high

dimensional homogeneous isolated hypersurface singularities.

For isolated singularities, there are few existing research results. In [5], the authors proved

Nakai conjecture for homogeneous Brieskorn isolated hypersurface singularity, Xiao-Yau-Zuo

[19] verified Nakai conjecture for weighted homogeneous Brieskorn case. Recently, Yau-Zhu-Zuo

[22] proved the Nakai Conjecture for the homogeneous isolated hypersurface singularities. They

introduced new ideas to analyse the necessary condition for D ∈ Der2(A) to be generated by

Der1(A) and completed the proof by construction.

In this paper, we use an exact sequence (see theorem 2.8, [16]) as the main idea, to transfer the

construction of an element inDer2(A) to an n-tuple of elements inDer1(A), and prove the Nakai

Conjecture for the cases of weighted homogeneous hypersurface singularities and hypersurface

cusp singularities.

More precisely, in section 3, we generalize part of the results obtained in [22] to weighted

homogeneous hypersurface singularity cases (see theorem 3.2, theorem 3.7 and remark 3.8), and

then follow the remark 3.5 to construct an n-tuple of first order derivations which cannot be the

image of any D ∈ der2(A) under the map in theorem 2.8. The theorem is stated as following:

Theorem A. Let A = P/I where P = k[x1, · · · , xn], I = (f) with (V (f), 0) a fewnomial

weighted homogeneous isolated hypersurface singularity, then der2(A) ̸= Der2(A). The Nakai

Conjecture holds for fewnomial weighted homogeneous isolated hypersurface singularities.

In section 4, we move to the cases of some singularities which are not weighted homogeneous.

We verify the Nakai Conjecture is true for hypersurface cusp singularities (Tp,q,r singularities).

The idea of proof is similar to the proof in section 3, by searching the necessary conditions for

elements in der2(A) and doing concrete constructions.

Theorem B. Let A = C[x, y, z]/(f) be the coordinate ring of the hypersurface cusp singularity

({f = xp+ yq + zr +xyz = 0}, 0), where 1
p +

1
q +

1
r < 1, then der2(A) ̸= Der2(A). In particular,

the Nakai Conjecture holds.
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2. Preliminaries

In the following two subsections we recall some basic definitions and theorems of higher order

differential operators and derivations. Readers can refer to [12] and [16].

2.1. Higher order differential operators and derivations.

Let k,A be commutative rings with unit elements and let A be a k-algebra. Let F be an A-

module. A q-th order differential operator ∆ of A/k into F is, by definition, a k-homomorphism

of A into F satisfying the following identity:

∆ (x0x1, · · · , xq) =
q+1∑
s=1

(−1)s−1
∑

i1<···<is

xi1 · · ·xis∆(x0 · · · x̌i1 · · · x̌is · · ·xq)

for any tuple (x0, x1, · · · , xq) of (q + 1)-elements in A. Denote by Diffq(A,F ) the set of q-th

order differential operators of A into F , and Derq(A,F ) = {∆ ∈ Diffq(A,F )|∆(1) = 0} the

set of q-th order derivations of A into F . When F = A, we will simply denote Diffq(A,F ) by

Diffq(A) and denote Derq(A,F ) by Derq(A).

Let N be the set of all non-negative integers and put V = Nn. For α = (α1, · · · , αn) ∈ V ,

we use the standard notation: |α| = α1 + · · · + αn, α! = α1! · · ·αn!, xα = xα1
1 · · ·xαn

n , etc.

For r ∈ Z let Vr = {α ∈ V | |α| ≤ r} and Wr = {α ∈ V | |α| = r}. For 1 ≤ i ≤ n, let

ei = (0, · · · , 1, · · · , 0) ∈ W1 with 1 at the i-th place.

Let P = k[x1, · · · , xn]. For α ∈ V let ∂α denote the derivation (1/α!)∂α/∂xα : P → P . The

first order derivations of P is well-known as Der1(P ) = P ⟨∂x1 , · · · , ∂xn⟩, meanwhile higher order

derivations are generated by first order ones, i.e., ∂α ∈ Diff |α|(P ). When A = P/I with I proper

ideal of P , the higher derivations are presented as follows:

Theorem 2.1. Let P = k [x1, x2, · · · , xn], I be a proper ideal of P and A = P/I. Then

Derm(A) ∼=
{D ∈ Derm(P ), D(I) ∈ I}

IDerm(P )
∼= {D ∈ Derm(P,A)|D(I) = 0};

Diffm(A) ∼=
{D ∈ Diffm(P ), D(I) ∈ I}

I Diffm(P )
∼= {D ∈ Diffm(P,A)|D(I) = 0}.

By Theorem 2.1, we will identify derivations(differential operators) in Der(A)(Diff(A)) with

their lifts in Der(P )(Diff(P )) or in Der(P,A)(Diff(P,A)) throughout the later discussion. Then

every D ∈ Diff(A) has a unique expression of the form in Diff(P,A):

D =
∑
a∈V

ca(D)∂a

with cα(D) ∈ A for all α and D(I) ∈ I, and cα(D) = 0 for almost all α.

Definition 2.2. For D ∈ Diff(P ) and β ∈ V , define

⟨D,xβ⟩ =
∑
α∈V

cα+β(D)∂α.

Note that if D ∈ Diffr(P ) then ⟨D,xβ⟩ ∈ Diffr−|β|(P ).

Lemma 2.3. Let D ∈ Der1(P ) and D′ ∈ Diffr(P ). Then for every α ∈ Wr+1 we have

cα(DD′) =

n∑
i=1

αiD(xi)cα−ei(D
′).
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2.2. Descent of Higher Order Derivations.

Definition 2.4. [16] Let Φ : Diff(P ,A)× V → Der(P ,A) be the pairing defined by Φ(D,β) =〈
D,xβ

〉
−
(〈
D,xβ

〉
(1)

)
R
=

〈
D,xβ

〉
− cβ(D)∂0. Note that Φ is the direct limit of the pairings

Φm,r : Diffm(P ,A)×Wr → Derm−r(P ,A)

given by

Φm,r(D,β) = ⟨D,xβ⟩ − cβ(D)∂0.

Proposition 2.5. [16] For r ≤ m, we have an exact sequence

0 → Diffr(P ,A) −→ Diffm(P ,A)
θm,r−→

⊕
β∈Wr

Derm−r(P ,A),

where θm,r(D) = (Φm,r(D,β))β∈Wr
, and Diffr(P,A) ↪→ Diffm(P,A) is the natural inclusion.

Corollary 2.6. [16] For D ∈ Diffm(P ,A) the following three conditions are equivalent:

(i) D ∈ Diffm(A).

(ii)
〈
D,xβ

〉
∈ Diffm−|β|(A) for every β ∈ V .

(iii)
〈
D,xβ

〉
∈ Diffm−|β|(A) for every β ∈ Vm−1.

In view of the above corollary, the pairings Φm,r induce pairings

φm,r : Diffm(A)×Wr −→ Derm−r(A).

It follows from Proposition 2.5 that for r ≤ m, we have an exact sequence

0 → Diffr(A) −→ Diffm(A)
θm,r−→

⊕
β∈Wr

Derm−r(A),

where θm,r(D) = (φm,r(D,β))β∈Wr
, and Diffr(A) ↪→ Diffm(A) is the natural inclusion.

Definition 2.7. For m ∈ Z define

Dm(A) ={(dβ)β∈Wm−1
∈

⊕
β∈Wm−1

Der1(A) | dβ (xi) = dγ (xj) whenever

β + ei = γ + ej , β, γ ∈ Wm−1, 1 ≦ i, j ≦ n}.

If D ∈ Diffm(A) and θm,m−1(D) = (dβ)β∈Wm−1
, then dβ (xi) = cβ+ei(D). It follows that

Im (θm,m−1) ⊂ Dm(A).

We write θm = θm,m−1 for simplicity.

It is easy to see that D2(A) := {(d1, · · · , dn) ∈ ⊕n
i=1Der1(A)|di(xj) = dj(xi) for all i, j}.

Theorem 2.8. Suppose A = P/I and I is principal. Then the sequence

0 → Der1(A) → Der2(A)
θ2−→ D2(A) → 0

is exact.

Proof. See Theorem 2.13 in [16]. □
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2.3. Weighted homogeneous fewnomial isolated singularities.

In this subsection, we recall definitions related to weighted homogeneous fewnomial isolated

singularities.

Definition 2.9. A polynomial f =
∑

α∈Nn aαx
α ∈ k[x1, x2, · · · , xn] is called weighted homo-

geneous of weight type (w1, w2, · · · , wn; d), if w1α1 + w2α2 + · · · + wnαn = d holds for each

multi-index α = (α1, · · · , αn) with aα ̸= 0. We call wi the weight of xi and d the weighted

degree of f , denoted by wt(xi) = wi and wt(f) = d.

Definition 2.10. [9] We say that a polynomial f ∈ k[x1, x2, · · · , xn] is fewnomial if the number

of monomials appearing in f does not exceed n.

Obviously, the number of monomials in f may depend on the system of coordinates. In order

to obtain a rigorous concept we shall only allow linear changes of coordinates and say that f

(or rather its germ at the origin) is a m-nomial if m is the smallest natural number such that

f becomes a m-nomial after (possibly) a linear change of coordinates. An isolated hypersurface

singularity V is calledm-nomial if there exists an isolated hypersurface singularity Y analytically

isomorphic to V which can be defined by a m-nomial and m is the smallest such number. It

was shown that a singularity defined by a fewnomial f can be isolated only if f is a n-nomial in

n variables when its multiplicity at least 3 [6].

Definition 2.11. We say that an isolated hypersurface singularity (V, 0) is fewnomial if it

can be defined by a fewnomial polynomial f . (V, 0) is called weighted homogeneous fewnomial

isolated singularity if it can be defined by a weighted homogeneous fewnomial f . 2-nomial (resp.

3-nomial) isolated hypersurface singularity is also called binomial (resp. trinomial) singularity.

The following proposition tells us that each simple singularity belongs to one of the following

three types of series.

Proposition 2.12. [21] Let (V (f), 0) be a weighted homogeneous fewnomial isolated hyper-

surface singularity with multiplicity at least 3. Then f is analytically equivalent to a linear

combination of the following three series:

Type A. xa11 + xa22 + · · ·+ x
an−1

n−1 + xann , n ≥ 1,

Type B. xa11 x2 + xa22 x3 + · · ·+ x
an−1

n−1 xn + xann , n ≥ 2,

Type C. xa11 x2 + xa22 x3 + · · ·+ x
an−1

n−1 xn + xann x1, n ≥ 2.

3. The weighted homogeneous fewnomial isolated singularity case

From now on we consider the case of P = k[x1, x2, · · · , xn], I = (f)⊂ P , where f is a weighted

homogeneous polynomial of weight type (w1, · · · , wn; 1) and A = P/I. Denote by fi the partial

derivative ∂f
∂xi

, and J(f) = (f1, f2, · · · , fn) the Jacobian ideal of f throughout later discussion.

Proposition 3.1. Der1(A) is generated by the Euler derivation E =
∑n

i=1wixi∂xi and Hamil-

tonian derivations Dij := fi∂xj − fj∂xi .

For the proposition 3.1, one can refer to [5] for a simple proof, the key point is that f1, f2, · · · , fn
form a regular sequence in P .

Theorem 3.2. Let D ∈ Der2(A) and θ2(D) = (d1, · · · , dn). If D is in der2(A), then

di(xi) ∈ (f1, · · · , fi−1, xi, fi+1, · · · , fn)2.
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Proof. By Proposition 3.1, we know Der1(A) is generated by E and Dij ’s where 1 ≤ i < j ≤ n.

Therefore the generators of Der1(A)Der1(A) as an A-module are the followings: DijDkl, DijE,

EDij and E2. As [Der1(A), Der1(A)] ⊂ Der1(A), θ2(D1D2) = θ2(D2D1) for D1, D2 ∈ Der1(A).

Therefore, we only need to consider the image of the generators E2, EDij , DijDkl under θ2.

Without loss of generality, we can only consider d1(x1). For D = DijDkl, if i, j, k, l ̸= 1, then

d1 = 0. Therefore, we only need to consider the following cases:

If D = 1
2E

2,

d1 = w1x1E, d1(x1) = w2
1x

2
1.

If D = D1jE,

d1 = −fjE + w1x1D1j , d1(x1) = −2w1x1fj .

If D = DijE, i, j ̸= 1,

d1 = w1x1Dij , d1(x1) = 0.

If D = D1jD1l,

d1 = −fjD1l − flD1j , d1(x1) = 2fjfl.

If D = D1jDkl, k, l ̸= 1.

d1 = −fjDkl, d1(x1) = 0.

Immediately we get d1(x1) ∈ (x1, f2, · · · , fn)2. □

Corollary 3.3. For D ∈ Der2(A) with θ2(D) = (d1, · · · , dn), if

di(xi) /∈ (f1, · · · , fi−1, xi, fi+1, · · · , fn)2

for some i, then D does not belong to der2(A) and the Nakai Conjecture holds for the ring A.

Theorem 3.4. ([22]) For d1, · · · , dn ∈ Der1(A), if di(xj)−dj(xi) ∈ J(f) ∀i, j, then ∃ (d′1, · · · , d′n) ∈
D2(A), such that d′i − di is an A-linear combination of Dkl’s, (k, l = 1, · · · , n) for each i.

Proof. The idea of proof is to adjust di by adding or deleting Dkl. The n = 2 case is easy to

adjust. However when n grows larger, the latter adjustment may break the equality constructed

by former adjustments. We begin with n = 2.

Step 1: n = 2.

In the case of n = 2, the diagram of (d1, d2) can be presented as follows:

d1 = d1(x1)∂1 + d1(x2)∂2,

d2 = d2(x1)∂1 + d2(x2)∂2.

Now assume d1(x2) − d2(x1) = a1f1 + a2f2. By adding −a1D12 to d1 and −a2D12 to d2, we

obtain

d′1 = d1 − a1D12 = (d1(x1) + a1f2)∂1 + (d1(x2)− a1f1)∂2,

d′2 = d2 − a2D12 = (d2(x1) + a2f2)∂1 + (d2(x2)− a2f1)∂2.

Therefore d′1(x2) = d′2(x1).

Step 2: n = 3.

Now we consider n = 3, the diagram of di becomes:

d1 = d1(x1)∂1 + d1(x2)∂2 + d1(x3)∂3,

d2 = d2(x1)∂1 + d2(x2)∂2 + d2(x3)∂3,

d3 = d3(x1)∂1 + d3(x2)∂2 + d3(x3)∂3.
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We can first assume that

d1(x2)− d2(x1) = a3f3,

because the part of the difference with respect to f1 and f2 can be diminished by the operation

in case of n = 2.

Now adding a3D23 to d1 we get:

d′1 = d1(x1)∂1 + (d1(x2)− a3f3)∂2 + (d1(x3) + a3f2)∂3,

d′2 = d2(x1)∂1 + d2(x2)∂2 + d2(x3)∂3,

d′3 = d3(x1)∂1 + d3(x2)∂2 + d3(x3)∂3.

Note that d′1(x2) = d′2(x1) and d′i(xj) − d′j(xi) ∈ J(f). Therefore, in later discussion we can

assume d1(x2) = d2(x1), meanwhile we abuse the notation of d′i and di.

Now the diagram of di becomes:

d1 = (∗)∂1 + (∗)∂2 + d1(x3)∂3,

d2 = (∗)∂1 + (∗)∂2 + d2(x3)∂3,

d3 = d3(x1)∂1 + d3(x2)∂2 + (∗)∂3.

We aim to adjust d1(x3) and d3(x1). By adding D13 to d1 and d3 as in Step 1 we can assume

d1(x3)− d3(x1) ∈ (f2).

Assume that d1(x3)− d3(x1) = a2f2. By adding −a2D12 to d3 we get

d′3 = (d3(x1) + a2f2)∂1 + (d3(x2)− a2f1)∂2 + (∗)∂3.

In this case d′3(x1) = d1(x3) and d′3(x2) − d2(x3) ∈ J(f). So without loss of generality we can

assume d3(x1) = d1(x3).

We are left with the difference between d2(x3) and d3(x2):

d1 = (∗)∂1 + (∗)∂2 + (∗)∂3,
d2 = (∗)∂1 + (∗)∂2 + d2(x3)∂3,

d3 = (∗)∂1 + d3(x2)∂2 + (∗)∂3.

Similarly we can assume d3(x2)− d2(x3) = a1f1. However we should take care not to influence

the equality of d1(x2) = d2(x1) and d1(x3) = d3(x1). The adjustment is as follows:

d′1 = (∗)∂1 + ((∗) + 1

2
a1f3)∂2 + ((∗)− 1

2
a1f2)∂3,

d′2 = ((∗) + 1

2
a1f3)∂1 + (∗)∂2 + (d2(x3)−

1

2
a1f1)∂3,

d′3 = ((∗)− 1

2
a1f2)∂1 + (d3(x2) +

1

2
a1f1)∂2 + (∗)∂3.

Note this adjustment makes d′i(xj) = d′j(xi) hold for all i, j.

Step 4: n = 4.

Now we consider n = 4, which will be helpful for general n. The diagram of di is as follows:

d1 = (∗)∂1 + d1(x2)∂2 + d1(x3)∂3 + d1(x4)∂4,

d2 = d2(x1)∂1 + (∗)∂2 + d2(x3)∂3 + d2(x4)∂4,

d3 = d3(x1)∂1 + d3(x2)∂2 + (∗)∂3 + d3(x4)∂4,

d4 = d4(x1)∂1 + d4(x2)∂2 + d4(x3)∂3 + (∗)∂4.



8 ZIDA XIAO, STEPHEN S.-T. YAU, QIWEI ZHU, AND HUAIQING ZUO

By operation in the case n = 2 we can assume

d1(x2)− d2(x1) ∈ (f3, f4).

By operation in the case n = 3 we can assume d1(x2) = d2(x1) by adding D23, D24 to d1.

Similarly, for di(xj)− dj(xi) containing fl with l ≥ i or l ≥ j, we can always add Dil or Djl to

di or dj to diminish the fl part. Therefore, the diagram exchanges to

d1 = (∗)∂1 + (∗)∂2 + (∗)∂3 + (∗)∂4,
d2 = (∗)∂1 + (∗)∂2 + d2(x3)∂3 + d2(x4)∂4,

d3 = (∗)∂1 + d3(x2)∂2 + (∗)∂3 + d3(x4)∂4,

d4 = (∗)∂1 + d4(x2)∂2 + d4(x3)∂3 + (∗)∂4,

with

d2(x3)− d3(x2) ∈ (f1), d2(x4)− d4(x2) ∈ (f1), d3(x4)− d4(x3) ∈ (f1, f2).

Following the last adjustment in Step 3, we can diminish the difference between d2(x3)−d3(x2),

d2(x4)−d4(x2) and d3(x4)−d4(x3). To avoid occupying too much, we illustrate the adjustment

for d3(x4)− d4(x4) = 2f1 + 2f2:

d1 = (∗)∂1 + (∗)∂2 + ((∗) + f4)∂3 + ((∗)− f3)∂4,

d2 = (∗)∂1 + (∗)∂2 + ((∗) + f4)∂3 + ((∗)− f3)∂4,

d3 = ((∗) + f4)∂1 + ((∗) + f4)∂2 + (∗)∂3 + (d3(x4)− f1 − f2)∂4,

d4 = ((∗)− f3)∂1 + ((∗)− f3)∂2 + (d4(x3) + f1 + f2)∂3 + (∗)∂4.

Notice f1 and f2 are independent in this adjustment, that is to say, we can first diminish the

difference in (f1) then (f2). Therefore it provides the proof for general n case.

Step 5: General n.

For di(xj)− dj(xi) ∈ J(f), by Step 2 we can assume

di(xj)− dj(xi) ∈ (f1, · · · , fi−1, fi+1, · · · , fj−1, fj+1, · · · , fn).

Step 3 and 4 tell us that each part in the difference with respect to fk is independent and

can be diminished without changing other equalities. Therefore we just need to do adjustment

repeatedly as the last one in Step 4, and we will obtain equality of all di(xj) and dj(xi) in the

end. □

Remark 3.5. We can transfer the Nakai Conjecture to the construction of the tuple (d1, · · · , dn) ∈
⊕n(Der1(A)), satisfying di(xj) − dj(xi) ∈ J(f),∀1 ≤ i < j ≤ n, and moreover di(xi) is not in

(f1, · · · , fi−1, x
2
i , fi+1, · · · , fn) for some i.

As if we find such a tuple (d1, d2, · · · , dn), by theorem 3.4 and theorem 2.8, there exists D ∈
Der2(A), θ2(D) = (d′1, d

′
2, · · · , d′n), such that for each 1 ≤ i ≤ n, di − d′i is A-linear combination

of Dkl’s, then di(xi)−d′i(xi) ∈ (f1, · · · , fi−1, fi+1, · · · , fn). If D ∈ der2(A), theorem 3.2 tells that

d′i(xi) ∈ (f1, · · · , fi−1, xi, fi+1, · · · , fn)2, then di(xi) ∈ (f1, · · · , fi−1, x
2
i , fi+1, · · · , fn) for each i,

which leads to a contradiction with the hypothesis for (d1, d2, · · · , dn).

Definition 3.6. For Hess(f) = ( ∂2f
∂xi∂xj

)i,j=1,··· ,n = (fij)i,j=1,··· ,n the Hessian matrix of f ,

let Mij be the complementary minor of fij and Hij be the algebraic co-factor of fij . Let

Mi1j1i2j2···ikjk be the complementary minor of the submatrix Hess(f)

[
i1 i2 · · · ik
j1 j2 · · · jk

]
and
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Hi1j1i2j2···ikjk be the algebraic co-factor of Hess(f)

[
i1 i2 · · · ik
j1 j2 · · · jk

]
. More precisely, let

σ1 = (i1, · · · , in), σ2 = (j1, · · · , jn) be permutations of (1, 2, · · · , n), then Hi1j1i2j2···ikjk =

(sgn(σ1)sgn(σ2)) · det
(
Hess(f)

[
ik+1 · · · in
jk+1 · · · jn

])
. It is easy to see that this expresion is

independent of the choice of orders of (ik+1, · · · , in) and (jk+1, · · · , jn), in particular, when

i1 < i2 < · · · < ik and j1 < j2 < · · · < jk, thenHi1j1i2j2···ikjk = (−1)
∑k

l=1 il+jl ·Mi1j1i2j2···ikjk . And

Hi1j1i2j2···ikjk is anti-symmetric for {i1, · · · , ik} and {j1, · · · , jk}, for example, H1224 = −H1422.

Theorem 3.7. With notations as above, for any i, j, k, one holds the following identity

wixiHjk − wkxkHji =
∑
l ̸=j

(1− wl)flHjkli.

Proof. Notice that both sides are anti-symmetric for i and k, we may assume i < k in the

following proof.

As f is weighted homogeneous of weight type (w1, · · · , wn; 1), fl is also weighted homogeneous

of weight type (w1, w2, · · · , wn; 1− wl), then (1− wl)fl =
∑n

s=1wsxsfls, and

RHS =
∑
l ̸=j

(

n∑
s=1

wsxsfls)Hjkli =

n∑
s=1

wsxs(
∑
l ̸=j

flsHjkli).

For s ̸= i, k, we have

∑
l ̸=j

flsHjkli =

j−1∑
l=1

fls(−Hlkji) +
n∑

l=j+1

flsHjkli

=

j−1∑
l=1

fls(−1)i+k+j+lMlijk −
n∑

l=j+1

fls(−1)i+k+j+lMlijk

=(−1)i+k+j+1det

(
Hess(f)

[
1 2 · · · j − 2 j − 1 j + 1 j + 2 · · · n− 1 n

s 1 · · · i− 1 i+ 1 · · · k − 1 k + 1 · · · n

])
=0.

Similarly for s = i,
∑

l ̸=j flsHjkli =
∑

l ̸=j fliHjkli = Hjk; for s = k,
∑

l ̸=j flsHjkli =
∑

l ̸=j flkHjkli =

−
∑

l ̸=j flkHjilk = −Hji, therefore

RHS =

n∑
s=1

wsxs(
∑
l ̸=j

flsHjkli) = wixiHjk − wkxkHji = LHS.

□

Remark 3.8. If we take di = Hji · E and dk = Hjk · E, then di(xk) = wkxkHji and dk(xi) =

wixiHjk. By Theorem 3.7, di(xk)− dk(xi) ∈ J(f).

To finish proof of Thm.A, we need a theorem by Saito.

Theorem 3.9. Let f ∈ k[x1, · · · , xn] be a weighted homogeneous polynomial, defining an isolated

singularity (V (f), 0) at the origin, then

det(Hess(f)) /∈ J(f).
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Proof. Since f is weighted homogeneous, f ∈ J(f), and the common zero locus of the partial

derivatives f1, f2, · · · , fn is a single point at the origin. Consider the germs of f1, f2, · · · , fn at

the origin, by lemma 3.4 in [14],

det(
∂(f1, · · · , fn)
∂(x1, · · · , xn)

) /∈ (f1, · · · , fn)OCn,0.

Therefore, det(Hess(f)) /∈ J(f)OCn,0, and necessarily det(Hess(f)) /∈ J(f) in k[x1, · · · , xn]. □

Now we begin to prove the main theorem A.

Proof. (of main theorem A)

By remark 3.5, it is enough to construct derivaions d1, · · · , dn∈ Der1(A), such that di(xj)−
dj(xi) ∈ J(f), and di(xi) /∈ (f1, · · · , fi−1, x

2
i , fi+1, · · · , fn) for some i.

Consider

di = Hij · E, 1 ≤ i ≤ n

for some fixed j. Since di(xi) = wixi ·Hij , by Theorem 3.7, di(xj)−dj(xi) ∈ J(f), we only need

to find xiHij /∈ (f1, · · · , fi−1, x
2
i , fi+1, · · · , fn) for some i, j ∈ {1, · · · , n}.

First, we treat the special cases: f is of Type A,B or C in proposition 2.12.

For Type A, it is obvious x1H11 /∈ (x21, f2, · · · , fn).
For Type B, f = xa11 x2 + xa22 x3 + · · ·+ x

an−1

n−1 xn + xann . In this case we have

f1 = a1x
a1−1
1 x2, f2 = xa11 + a2x

a2−1
2 x3, · · · , fn = x

an−1

n−1 + anx
an−1
n .

For any g ∈ k[x1, · · · , xn], we denote by g the image of g in k[x1, x2, · · · , xn]/(x1). Since

f2 = xa11 + a2x
a2−1
2 x3 = a2x

a2−1
2 x3 ∈ k[x1, x2, · · · , xn]/(x1),

(f2, · · · , fn) is the Jacobian ideal of f = xa22 x3+· · ·+x
an−1

n−1 xn+xann , which defines an isolated sin-

gularity in hyperplane {x1 = 0}. Therefore by theorem 3.9, H11 = det(Hess(f)) /∈ (f2, · · · , fn),
which implies

H11 /∈ (x1, f2, · · · , fn).

As x1 is regular in k[x1, · · · , xn]/(f2, · · · , fn), x1H11 /∈ (x21, f2, · · · , fn).
For Type C, f = xa11 x2 + xa22 x3 + · · ·+ x

an−1

n−1 xn + xann x1. Then Hess(f) =

a1(a1 − 1)xa1−2
1 x2 a1x

a1−1
1 0 · · · 0 anx

an−1
n

a1x
a1−1
1 a2(a2 − 1)xa2−2

2 x3 a2x
a2−1
2 0 · · · 0

0 a2x
a2−1
2 a3(a3 − 1)xa3−2

3 x4 a3x
a3−1
3 0

...
...

. . .
. . .

. . .
. . .

...

anx
an−1
n 0 · · · 0 an−1x

an−1−1
n−1 an(an − 1)xan−2

n x1


We claim H1n /∈ (x1, f2, · · · , fn).
Proof of the claim:

Expanding M1n on first column, there exist two parts. The first is f21f32 · · · fn(n−1) and the

second is (−1)nfn1M11nn.

We have f21f32 · · · fn(n−1) ∈ (x1, f2, · · · , fn) for f21 = a1x
a1−1
1 . We only need to show fn1M11nn /∈

(x1, f2, · · · , fn). Consider

g = xa22 x3 + xa33 x4 + · · ·+ x
an−2

n−2 xn−1 + x
an−1

n−1 xn,
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then gi = fi for all 3 ≤ i ≤ n− 1. And g|{xn=0} = xa22 x3 + xa33 x4 + · · · + x
an−2

n−2 xn−1 de-

fines an isolated singulariy in {x1 = xn = 0}. Then by theorem 3.9, det(Hess(g|{xn=0})) =

det( ∂(g2,··· ,gn−1)
∂(x2,··· ,xn−1)

)|{xn=0} /∈ (g2, g3 · · · , gn−1) in k[x2, x3, · · · , xn−1]. Necessarily,

M11nn = det(
∂(f2, · · · , fn−1)

∂(x2, · · · , xn−1)
) = det(

∂(g2, · · · , gn−1)

∂(x2, · · · , xn−1)
) /∈ (g2, g3 · · · , gn−1)

holds in k[x1, · · · , xn]. We also see that

(x1, f2, · · · , fn) = (x1, a2x
a2−1
2 x3+xa11 , g3, · · · , gn−1, x

an−1

n−1 +anx
an−1
n x1) = (x1, g2, g3, · · · , gn−1, x

an−1

n−1 ).

Since f1nM11nn = anx
an−1
n M11nn is independent of the variable x1 and any term containing

xn−1 has degree less than an−1, quotient by x1 and x
an−1

n−1 will lead to

anx
an−1
n M11nn /∈ (x1, g2, g3, · · · , gn−1, x

an−1

n−1 ) = (x1, f2, · · · , fn).

Now we get H1n /∈ (x1, f2, · · · , fn), as x1 is regular in k[x1, · · · , xn]/(f2, · · · , fn), x1H1n /∈
(x21, f2, · · · , fn).

For general case, since f is fewnomial, f is a direct sum of polynomials of Type A,B or C.

We can write

f = h1 + · · ·+ hl,

with hi ∈ k[xji−1+1, · · · , xji ] of Type A,B or C, where j0 = 0 and jl = n. We consider h1, by

above arguments, there exists a polynomial Q1, a minor of Hess(h1) by removing the s-th row

and the t-th column, such that

xsQ1 /∈ (
∂h1
∂x1

, · · · , x2s, · · · ,
∂h1
∂xj1

)= (f1, · · · , fs−1, x
2
s, fs+1, · · · , fj1),

Then from Hess(f) = diag(Hess(f1), · · · , Hess(fl)), Mst = Q1 ·
∏n

i=2 hess(hi), and xsHst =

(−1)s+txsMst /∈ (f1, · · · , fs−1, x
2
s, fs+1, · · · , fn), which finishes our proof. □

Remark 3.10. Indeed, the proof for fewnomial case can be applied to general weighted ho-

mogeneous cases, the problem is how to find some Hij /∈ Ii := (f1, · · · , fi−1, xi, fi+1, · · · , fn).
Theorem 3.9 cannot be used when k[x1, · · · , xn]/(f1, · · · , fn) is not Artinian. To see this, one

can check for f of Type C, in this case, H11 ∈ I1.

Here is another example for H11 /∈ I1.

Example 3.11. Let f = x6 + y3 + z2 + tx4y, which defines the Ẽ8 simple elliptic singularity.

Then

Hess(f) =

30x4 + 12tx2y 4tx3 0

4tx3 6y 0

0 0 2

 ,

as C[x, y, z]/I1 = C[x, y, z]/(x, 3y2+tx4, 2z) ≃ C[y]/(y2),H11 = 12y /∈ I1. Since C[x, y, z]/(fy, fz) =
C[x, y, z]/(tx4 + 3y2, 2z) ≃ C[x, y]/(tx4 + 3y2), x is regular in C[x, y, z]/(fy, fz), and we have

xH11 /∈ (x2, fy, fz), the Nakai Conjecture holds for C[x, y, z]/(f).

4. The hypersurface cusp singularity case

Dimension two hypersurface cusp singularities are almost classical (see [10]), and are locally

isomorphic to the so called Tp,q,r singularities, where Tp,q,r is the isomorphism class of the

hypersurface singularities ({xp + yq + zr + xyz = 0}, 0) with 1
p + 1

q +
1
r < 1. In this section, we

will verify the Nakai Conjecture for these types of singularities.
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With notations in section 2 , let D1 =
∑n

i=1 αi∂xi , D2 =
∑n

i=1 βi∂xi (αi, βi ∈ P ) induce two

first order derivations on A, then D1D2 =
∑n

i,j=1(αiβj∂xi∂xj+αi
∂βj

∂xi
∂xj ), and by definition the i-

th term of θ2(D1D2) is 2αiβi∂xi+
∑

j ̸=i(αiβj+αjβi)∂xj , ∀1 ≤ i ≤ n. AsD1(f) =
∑n

i=1 αifi ∈ (f),

by taking the j-th partial derivatives on both sides, we have
∑n

i=1 αifij ∈ (f, J(f)), ∀1 ≤ j ≤ n,

where J(f) = (f1, · · · , fn) is the Jacobi ideal of f . Express it in the matrix form, we have

Hess(f)(α1, · · · , αn)
T = 0 in R = C[x1, · · · , xn]/(f, J(f))= A/(J(f)).

Notice that R is not the Tjurina algebra of the singularity (V (f), 0), but we will see R is also

Artinian later, then we can translate this equation in R to several linear equations in C.
Now for the hypersurface cusp singularity case (V (f), 0), f = xp + yq + zr + xyz with 1

p +
1
q + 1

r < 1, then f1 := ∂f
∂x = pxp−1 + yz, f2 := ∂f

∂y = qyq−1 + zx, f3 := ∂f
∂z = rzr−1 + xy. As

xyz = (1p + 1
q + 1

r − 1)−1(xpf1 +
y
q f2 +

z
rf3 − f), xyz = 0 in R = C[x, y, z]/(f, f1, f2, f3) and

xp = yq = zr = 0 in R, so the unique maximal ideal m = (x, y, z) is nilpotent and R is Artinian.

Next we deal with it by dividing to smaller cases.

4.1. Cases of p, q, r ≥ 3.

When p, q, r ≥ 3, x2y = x(f3 − rzr−1) = xf3 − rzr−2(f2 − qyq−1) = xf3 − rzr−2f2 +

qryq−2zr−3(f1−pxp−1) = xf3−rzr−2f2+qryq−2zr−3f1−pqrxp−3yq−3zr−3 ·x2y, as 1
p+

1
q +

1
r < 1,

p + q + r > 9, xp−3yq−3zr−3 ∈ m. Thus x2y ∈ x2y · m, and x2y ∈ x2y · mk for any integer k.

Since m is nilpotent in R, x2y = 0 in R, similarly, xy2, x2z, xz2, y2z, yz2 all equal to 0 in R. So

R has a C-basis {1, x, · · · , xp−1, y, · · · , yq−1, z, · · · , zr−1}, dimCR = p+ q + r − 2.

For the equation Hess(f)(α1, · · · , αn)
T = 0 in R, it is written asp(p− 1)xp−2 z y

z q(q − 1)yq−2 x

y x r(r − 1)zr−2

α1

α2

α3

 = 0 in R.

By some calculations, we see that

(α1, α2, α3) ∈ SpanC{(x2, 0, 0), (x3, 0, 0) · · · (xp−1, 0, 0), (yq−1, 0, 0), (zr−1, 0, 0), (0, y2, 0), (0, y3, 0)

· · · (0, yq−1, 0), (0, xp−1, 0), (0, zr−1, 0), (0, 0, z2), (0, 0, z3) · · · (0, 0, zr−1), (0, 0, xp−1), (0, 0, yq−1)}

= R < (x2, 0, 0), (xy, 0, 0), (xz, 0, 0), (0, y2, 0), (0, xy, 0), (0, yz, 0), (0, 0, z2), (0, 0, xz), (0, 0, yz) > .

Thus αi ∈ m2, ∀1 ≤ i ≤ 3, together with previous calculations, write θ2(D1D2) = (d1, d2, d3),

then di(xi) = 2D1(xi)D2(xi), and D1(xi), D2(xi) ∈ m2 (mod J(f)) in A, we obtain the following

lemma immediately.

Lemma 4.1. For A = C[x, y, z]/(f), where f = xp+yq+zr+xyz with p, q, r ≥ 3, 1p +
1
q +

1
r < 1,

let D ∈ der2(A) and θ2(D) = (d1, d2, d3), then

d1(x), d2(y), d3(z) ∈ m4 + J(f) in A,

which is equivalent to say, they belong to m4 in R.

Now we begin to prove Nakai’s conjecture for these cases. We need to do some concrete

calculations. In C[x, y, z], we have

x2yz =xzf3 + xyf2 − f2f3 + (f2 − xz)(f3 − xy)

=xzf3 + xyf2 − f2f3 + qryq−1zr−1

=xzf3 + xyf2 − f2f3 + qryq−2zr−2(f1 − pxp−1)

=xzf3 + xyf2 − f2f3 + qryq−3zr−3f1(f1 − pxp−1)− pqrxp−1yq−2zr−2
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=xzf3 + xyf2 − f2f3 + qryq−3zr−3f2
1 − pqrxp−1yq−3zr−3f1 − pqrxp−1yq−2zr−2.

As xyz = (1p +
1
q +

1
r − 1)−1(xpf1+

y
q f2+

z
rf3− f), then x(1p +

1
q +

1
r − 1)−1(xpf1+

y
q f2+

z
rf3− f)

= xzf3+xyf2−f2f3+qryq−3zr−3f2
1−pqrxp−1yq−3zr−3f1−pqrxp−2yq−3zr−3(1p+

1
q+

1
r−1)−1(xpf1+

y
q f2+

z
rf3− f). Since xp−2qq−2zr−3, xp−2yq−3zr−2 = 0 in R, xp−2qq−2zr−3, xp−2yq−3zr−2 ∈ J(f)

in A, and we have

(
x2

p
+ pqr(

2

p
+

1

q
+

1

r
− 1)xp−1yq−3zr−3)f1+(1− 1

p
− 1

r
)xyf2+(1− 1

p
− 1

q
)xzf3 ≡ 0 (mod J(f)2)

in A. So there exist α11, α12, α13 ∈ A, such that α11f1 + α12f2 + α13α3 = 0 in A, where

α11 ≡ (1− 1

p
− 1

r
)−1(1− 1

p
− 1

q
)−1(

x2

p
+ pqr(

2

p
+

1

q
+

1

r
− 1)xp−1yq−3zr−3) (mod J(f)),

α12 ≡ (1− 1

p
− 1

q
)−1xy (mod J(f)),

α13 ≡ (1− 1

p
− 1

r
)−1xz (mod J(f)).

Similarly, there exist α21, α22, α23 ∈ A, α31, α32, α33 ∈ A, such that α21f1+α22f2+α23f3 = 0

in A, α31f1 + α32f2 + α33f3 = 0 in A, satisfying

α21 ≡ (1− 1

p
− 1

q
)−1xy (mod J(f)),

α22 ≡ (1− 1

q
− 1

r
)−1(1− 1

q
− 1

p
)−1(

y2

q
+ pqr(

2

q
+

1

p
+

1

r
− 1)xp−3yq−1zr−3) (mod J(f)),

α23 ≡ (1− 1

q
− 1

r
)−1yz (mod J(f));

α31 ≡ (1− 1

p
− 1

r
)−1xz (mod J(f)),

α32 ≡ (1− 1

q
− 1

r
)−1yz (mod J(f)),

α33 ≡ (1− 1

p
− 1

r
)−1(1− 1

q
− 1

r
)−1(

z2

r
+ pqr(

2

r
+

1

p
+

1

q
− 1)xp−3yq−3zr−1) (mod J(f)).

From these calculations, we obtain the following proposition immediately.

Proposition 4.2. Let A = C[x, y, z]/(f), where f = xp+yq+zr+xyz with p, q, r ≥ 3, 1p+
1
q+

1
r <

1 defines a hypersurface cusp singularity, then there exists D ∈ Der2(A) does not lie in der2(A).

Proof. With notations as above, we have seen that di :=
∑3

j=1 αij∂xj , 1 ≤ i ≤ 3 are three

derivations in Der1(A). Since for any 1 ≤ i, j ≤ 3, di(xj) − dj(xi) = αij − αji ∈ J(f),

by theorem 3.4 and theorem 2.8, there exists D ∈ Der2(A), θ2(D) = (d′1, d
′
2, d

′
3) such that

d1(x)− d′1(x) ∈ J(f) in A. And d1(x) = α11 /∈ m4 + J(f) forces d′1(x) /∈ m4 + J(f). So D does

not lie in der2(A) follows from lemma 4.1. □
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4.2. Cases of p, q ≥ 4, r = 2.

When p, q ≥ 4, r = 2, R = C[x, y, z]/(f, J(f)) = C[x, y, z]/(pxp−1 + yz, qyq−1 + zx, 2z +

xy, xyz) = C[x, y]/(x2y2, 2pxp−1 − xy2, 2qyq−1 − x2y), and x3y = x2(f3 − 2z) = x2f3 − 2x(f2 −
qyq−1) = x2f3 − 2xf2 + 2qyq−2(f3 − 2z) = x2f3 − 2xf2 + 2qyq−2f3 − 4qyq−3(f1 − pxp−1) ≡
4pqx3y ·xp−4yq−4 (mod (f, J(f))), as 1

p+
1
q +

1
2 < 1, p+q > 8, xp−4yq−4 ∈ m. Thus x3y ∈ x3y ·m,

and x3y ∈ x3y · mk for any integer k, hence x3y = 0 in R from the nilpotency of m, similarly,

xy3 = 0 in R. So R has a C-basis {1, x, · · · , xp−1, y, · · · , yq−1, xy}, dimCR = p+ q.

For the equations Hess(f)(α1, α2, α3)
T = 0 in R, we calculated that

(α1, α2, α3) ∈ R < (x3, 0, 0), (yq−1, 0, 0), (yq−2,
1

2q
xy, 0), (yq−2, 0,−1

2
yq−1), (x2,−xy, 0), (x2, 0,−qyq−1),

(0, y3, 0), (0, xp−1, 0), (
1

2p
xy, xp−2, 0), (0, xp−2,−1

2
xp−1), (−xy, y2, 0), (0, y2,−pxp−1) > .

We see that each αi ∈ m2, lemma 4.1 still holds for this case.

Lemma 4.3. For A = C[x, y, z]/(f), where f = xp + yq + z2 + xyz with p, q ≥ 4, 1p +
1
q < 1

2 , let

D ∈ der2(A) and θ2(D) = (d1, d2, d3), then

d1(x), d2(y), d3(z) ∈ m4 + J(f) in A.

Similar as the construction of the p, q, r ≥ 3 case, we just need to construct a matrix Q =

(αij)3×3 in A, such that Q · (f1, f2, f3)T = 0 and αij − αji ∈ J(f), and one of the α11, α22, α33

is not in m4 + J(f).

In C[x, y, z], yq−1z = (f1 − pxp−1)yq−2 = yq−2f1 − pxp−1yq−2 = yq−2f1 − pxp−2yq−3(f3 − 2z),

xp−2yq−3 = x2y·xp−4yq−4 ∈ (f, J(f)), xp−2yq−3z = xp−3yq−4(1p+
1
q+

1
r−1)−1(xpf1+

y
q f2+

z
rf3−f),

and xp−3yq−4z ∈ (f, J(f)), so we have

x2

p
f1 +

xy

q
f2 +

xz

r
f3 ≡(

1

p
+

1

q
+

1

r
− 1)x2yz

≡(
1

p
+

1

q
+

1

r
− 1)(xyf2 + xzf3 − f2f3 + 2qyq−1z)

≡(
1

p
+

1

q
+

1

r
− 1)(2qyq−2f1 + xyf2 + xzf3) + 4qxp−2yq−4f1 + 4pxp−3yq−3f2

(mod (f, J(f)2)). (∗)

From the symmetry of (x, p) and (y, q), we also have

xy

p
f1 +

y2

q
f2 +

yz

r
f3 ≡ (

1

p
+

1

q
+

1

r
− 1)(2pxp−2f2 + xyf1 + yzf3) + 4pxp−4yq−2f2 + 4qxp−3yq−3f1

(mod (f, J(f)2)) (∗′),

(1) If p+ q ≥ 10, xp−3yq−3 ∈ (f, J(f)), we can choose α11, α12, α13 ∈ A and α21, α22, α23 ∈ A,

such that

α11 ≡ (1− 1

p
− 1

r
)−1(1− 1

p
− 1

q
)−1(

x2

p
− 2q(

1

p
+

1

q
+

1

r
− 1)yq−2 − 4qxp−2yq−4) (mod J(f)),

α12 ≡ (1− 1

p
− 1

q
)−1xy (mod J(f)),

α13 ≡ (1− 1

p
− 1

r
)−1xz (mod J(f));

α21 ≡ (1− 1

p
− 1

q
)−1xy (mod J(f)),
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α22 ≡ (1− 1

q
− 1

r
)−1(1− 1

p
− 1

q
)−1(

y2

q
− 2p(

1

p
+

1

q
+

1

r
− 1)xp−2 − 4pxp−4yq−2) (mod J(f)),

α23 ≡ (1− 1

q
− 1

r
)−1yz (mod J(f)).

For α31, α32 and α33, we use the following identity in C[x, y, z],

xyz2 = yzf2 + xzf1 − f1f2 + pqxp−1yq−1

= yzf2 + xzf1 − f1f2 + pqxp−2yq−2(f3 − rzr−1)

= yzf2 + xzf1 − f1f2 + pqxp−3yq−3f3(f3 − rzr−1)− pqrxp−2yq−2zr−1

≡ yzf2 + xzf1 − pqrxp−3yq−3zr−1f3 − pqrxp−3yq−3zr−2(
x

p
f1 +

y

q
f2 +

z

r
f3)(

1

p
+

1

q
+

1

r
− 1)−1

(mod (f, J(f)2)),

as r = 2, p, q ≥ 4, p + q > 8, xp−2yq−3zr−2 = xp−2yq−3 = 0 in R, similarly xp−3yq−2zr−2 =

xp−3yq−2 = 0 in R and xp−3yq−3zr−1 = −1
2x

p−2yq−2 = 0 in R, so

z(
x

p
f1 +

y

q
f2 +

z

r
f3)(

1

p
+

1

q
+

1

r
− 1)−1 ≡ yzf2 + xzf1 (mod (f, J(f)2)).

We can choose α31 ≡ (1 − 1
p − 1

r )
−1xz (mod J(f)), α32 ≡ (1 − 1

q − 1
r )

−1xy (mod J(f)), and

α33 ≡ 0 (mod J(f)). We see that α11 ≡ (1 − 1
p − 1

r )
−1(1 − 1

p − 1
q )

−1(x
2

p − 2q(1p + 1
q + 1

r −
1)yq−2) (mod (m4, J(f))), so α11 /∈ (m4, J(f)).

(2) If p+ q < 10, we may assume p = 5, q = 4. Multiplying x on both sides of (∗), and notice

that x2z, xp−2yq−3 = x3y ∈ (f, J(f)), we have

(
x3

5
+

2

5
xy2 − 16x4)f1 +

3

10
x2yf2 ≡ 0 (mod (f, J(f)2)).

Multiplying x on both sides of (∗′), and notice that xyz ∈ (f, J(f)), xp−2yq−3 = x3y ∈ (f, J(f)),

xp−3yq−2 = x2y2 ∈ (f, J(f)), we have

1

4
x2yf1 +

3

10
xy2f2 ≡ 0 (mod (f, J(f)2)).

Now there exists Q = (αij) in A, Q · (f1, f2, f3)T = 0, and satisfies α11 ≡ 10
3 (

x3

5 + 2
5xy

2 −
16x4) (mod J(f)), α12 ≡ x2y (mod J(f)), α21 ≡ x2y (mod J(f)), α22 ≡ 6

5xy
2 (mod J(f)), and

αij ≡ 0 (mod J(f)) if i = 3 or j = 3. We see that α11 /∈ (m4, J(f)).

From this concrete constructions, we get the following property.

Proposition 4.4. Let A = C[x, y, z]/(f), where f = xp + yq + z2 + xyz with p, q ≥ 4, 1p +
1
q < 1

2

defines a hypersurface cusp singularity, then there exists D ∈ Der2(A) does not lie in der2(A).

Proof. With notations and calculations as above, there exists a matrix Q = (αij)3×3 in A, satis-

fying Q · (f1, f2, f3)T = 0, QT ≡ Q (mod J(f)), and α11 /∈ (m4, J(f)). Then di :=
∑3

j=1 αij∂xj ,

1 ≤ i ≤ 3 are three derivations inDer1(A), and di(xj)−dj(xi) = αij−αji ∈ J(f). By theorem 3.4

and theorem 2.8, there exists D ∈ Der2(A), θ2(D) = (d′1, d
′
2, d

′
3) such that d1(x)− d′1(x) ∈ J(f)

in A. And d1(x) = α11 /∈ m4 + J(f) forces d′1(x) /∈ m4 + J(f). So D does not lie in der2(A)

follows from lemma 4.3. □
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4.3. Cases of p ≥ 7, q = 3, r = 2.

When p > 6, q = 3, r = 2, R = C[x, y, z]/(f, J(f)) = C[x, y, z]/(pxp−1+yz, 3y2+xz, 2z+xy) ⋍
C[x, y]/(x2y2, 2pxp−1 − xy2, 6y2 − x2y), then x3y = 6y2x = 12pxp−1 in R, R has a C-basis
{1, x, · · · , xp−1, y, y2, xy}, dimCR = p+ 3.

For the equation Hess(f) · (α1, α2, α3)
T = 0 in R, we calculated that

(α1, α2, α3) ∈ R < (x4, 0, 0), (x3,−12pxp−2, 0), (x3,−6y2, 0), (x3, 0,−6pxp−1), (x2, 2xy,−9y2),

(y2, 0, 0), (y,
1

3
xy,−3

2
y2), (xy,−y2, 0), (xy,−2pxp−2, 0), (xy, 0,−pxp−1), (0, x4,−1

2
x5) > .

We see that each α2, α3 ∈ m2, α1 ∈ (x2, y), lemma 4.1 can be adjusted as following.

Lemma 4.5. Let A = C[x, y, z]/(f) where f = xp + y3 + z2, p ≥ 7, D ∈ der2(A), and θ2(D) =

(d1, d2, d3), then

d1(x) ∈ (x2y, x4) + J(f), and d2(y), d3(z) ∈ m4 + J(f).

We begin to do some concrete calculations, in C[x, y, z], x2(xpf1 +
y
3f2 +

z
2f3 − f)(1p +

1
3 +

1
2 −

1)−1 = x3yz = x2zf3 + x2yf2 − xf2f3 + 6xy2z = x2zf3 + x2yf2 − xf2f3 + 6y(xpf1 +
y
3f2 +

z
2f3 −

f)(1p + 1
3 + 1

2 − 1)−1, then we have

x3 − 6xy

p
f1 + (

1

6
− 1

p
)x2yf2 + 6p(

1

p
− 1

6
)xp−1f3 ≡ 0 (mod (f, J(f)2)).

As xy(xpf1 +
y
3f2 +

z
2f3 − f)(1p + 1

3 + 1
2 − 1)−1 = x2y2z = x(xyf1 + yzf3 − f1f3 + 2pxp−1z) =

x2yf1+xyzf3−xf1f3+2pxpz = x2yf1+xyzf3−xf1f3+2pxp−1(f2−3y2) = x2yf1+xyzf3−xf1f3+

2pxp−1f2 − 6pxp−2y(f3 − 2z) = x2yf1 + xyzf3 − xf1f3 + 2pxp−1f2 − 6pxp−2yf3 + 12pxp−2yz =

x2yf1+xyzf3−xf1f3+2pxp−1f2−6pxp−2yf3+12pxp−3(xpf1+
y
3f2+

z
2f3− f)(1p +

1
3 +

1
2 −1)−1,

and moreover xp−3y ∈ (f, J(f)), we have

(
1

6
x2y − 12xp−2)f1 + (

xy2

3
− 2p(

1

p
− 1

6
)xp−1)f2 ≡ 0 (mod (f, J(f)2)).

Multiplying x on both sides leading to

xp−1f1 ≡ 0 (mod (f, J(f)2)).

xp−2f2 = xp−2(3y2 + zx) = 3xp−3y(f3 − 2z) + xp−1z ≡ −6xp−3yz + xp−1 f3−xy
2 ≡ −6xp−4(xpf1 +

y
3f2 +

z
2f3)(

1
p − 1

6)
−1 + xp−1

2 f3 − xpy
2 (mod (f, J(f)2)).

(1)If p ≥ 8, xp−4y, xp−4z ∈ (f, J(f)), so we have

(
1

p
− 1

6
)(xp−2f2 −

xp−1

2
f3) ≡ −6

p
xp−3f1 −

y

2p
((
1

p
− 1

6
)xf1 −

x

p
f1 −

y

3
f2 −

z

2
f3) (mod (f, J(f)2)).

Using the standard C-basis of R, the above equations can be written as
x3−6xy

p (1− 6
p)y

2 (6− p)xp−1

(6px
p−3 − 1

12pxy) (1p − 1
6)x

p−2 − 1
6py

2 (13 − 1
2p)x

p−1

y2 − 12xp−2 (p− 2)xp−1 0

xp−1 0 0

 ·

f1
f2
f3

 ≡ 0 (mod (f, J(f)2)).
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Multiplying the matrix


p

p−6 · ( 1
12p + 1

72) 1 0 0

0 0 − 1
12(

1
p − 1

6) 0

0 0 0 − p
72 + 1

4 − 1
2p

 on both sides, and

modulo f , we have
6
px

p−3 + p+6
72p(p−6)x

3 − (p−2)(p−3)
12p(p−6) xy − 1

12(
1
p − 1

6)(y
2 − 12xp−2) (− p

72 + 1
4 − 1

2p)x
p−1

− 1
12(

1
p − 1

6)(y
2 − 12xp−2) − 1

12(
1
p − 1

6)(p− 2)xp−1 0

(− p
72 + 1

4 − 1
2p)x

p−1 0 0

·

f1
f2
f3

 ≡ 0

(mod J(f)2) in A.

Therefore, we can take Q = (αij) in A such that Q · (f1, f2, f3)T = 0 and

Q ≡


6
px

p−3 + p+6
72p(p−6)x

3 − (p−2)(p−3)
12p(p−6) xy − 1

12(
1
p − 1

6)(y
2 − 12xp−2) (− p

72 + 1
4 − 1

2p)x
p−1

− 1
12(

1
p − 1

6)(y
2 − 12xp−2) − 1

12(
1
p − 1

6)(p− 2)xp−1 0

(− p
72 + 1

4 − 1
2p)x

p−1 0 0

 (mod J(f)),

we can see that α11 /∈ (x2y, x4) + J(f).

(2)If p = 7, similar calculations lead to the following equations:
x3−6xy

7
1
7y

2 −x6

6
7x

4 − 1
84xy − 1

42x
5 + 168x6 − 1

42y
2 11

42x
6

y2 − 12x5 5x6 0

x6 0 0

 ·

f1
f2
f3

 ≡ 0 (mod (f, J(f)2)).

We can take Q = (αij) in A such that Q · (f1, f2, f3)T = 0 and

Q ≡

−91
12 −42 42× 168

5 0

0 0 − 1
12 0

0 0 0 −41
12

 ·


x3−6xy

7
1
7y

2 −x6

6
7x

4 − 1
84xy − 1

42x
5 + 168x6 − 1

42y
2 11

42x
6

y2 − 12x5 5x6 0

x6 0 0


≡

−42×168×12
5 x5 − 36x4 − 13

12x
3 + 7xy + 42×168

5 y2 − 1
12y

2 + x5 −41
12x

6

− 1
12y

2 + x5 − 5
12x

6 0

−41
12x

6 0 0

 (mod J(f)),

we can see that αij ≡ αji (mod J(f)), and α11 /∈ (x2y, x4) + J(f) = (y2, x4) + J(f).

These constructions together with lemma 4.5 lead to the following proposition.

Proposition 4.6. Let A = C[x, y, z]/(f) where f = xp + y3 + z2, p ≥ 7 defines a hypersurface

cusp singularity, then there exists D ∈ Der2(A) does not lie in der2(A).

Proof. With notations and calculations as above, there exists a matrix Q = (αij)3×3 in A,

satisfying Q · (f1, f2, f3)T = 0, QT ≡ Q (mod J(f)), and α11 /∈ (x2y, x4) + J(f). Then di :=∑3
j=1 αij∂xj , 1 ≤ i ≤ 3 are three derivations in Der1(A), and di(xj)−dj(xi) = αij −αji ∈ J(f).

By theorem 3.4 and theorem 2.8, there exists D ∈ Der2(A), θ2(D) = (d′1, d
′
2, d

′
3) such that

d1(x)− d′1(x) ∈ J(f) in A. And d1(x) = α11 /∈ (x2y, x4) + J(f) forces d′1(x) /∈ (x2y, x4) + J(f).

So D does not lie in der2(A) follows from lemma 4.5. □

Now we can complete the proof of the main theorem B

Proof. (of main theorem B) Thm.B follows from propositions 4.2, 4.4 and 4.6. □
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