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Abstract. We calculate Hodge ideals and Hodge moduli algebras for three types of isolated
quasi-homogeneous curve singularities. We show that Hodge ideals and Hodge moduli algebras
of the singularities can determine the weights of the polynomials defining the singularities.
We give some examples to explain why Hodge moduli algebras and Hodge moduli sequence
are better invariants than characteristic polynomial (a topological invariant of the singularity)
for non-degenerate quasi-homogeneous singularities, in the sense that characteristic polynomial
cannot determine the weight type of the singularity.
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1. Introduction

In [17] and [18], the authors ask whether the topology of the singularity determines the weights
of the polynomial defining the singularity. They showed that this is valid in the category of
isolated singularities of Brieskorn-Pham type and isolated quasi-homogeneous curve singularities.

Theorem 1.1 ([17]). The topology of a singularity of Brieskorn-Pham type determines the
exponents (weight) of the polynomial defining the singularity.

Theorem 1.2 ([18]). Let fi(z1, z2), i = 1, 2, be non-degenerate quasi-homogeneous polynomials
of weight (ri1, ri2; 1), 0 ≤ ri1 ≤ ri2 ≤ 1

2 , and let Vi be the germ of fi(z1, z2) = 0 at the origin of
C2. Then if (C2, V1, 0) ' (C2, V2, 0), homeomorphically, we have (r11, r12) = (r21, r22).

For quasi-homogeneous surface singularities, there are some relevant results. Arnold [1],
Orlik and Wagreich [13] showed that if h(z0, z1, z2) is a quasi-homogeneous polynomial in C3

and V = {h(z) = 0} has an isolated singularity at the origin, then V can be deformed into
one of the following seven classes below while keeping the differentiable structure of the link
KV = S2n+1

ϵ ∩ V constant.

I. V (a0, a1, a2; 1) = {za00 + za11 + za22 }, a0, a1, a2 > 1,

II. V (a0, a1, a2; 2) = {za00 + za11 + z1z
a2
2 }, a0, a1 > 1, a2 > 0,

III. V (a0, a1, a2; 3) = {za00 + za11 z2 + z1z
a2
2 }, a0 > 1, a1, a2 > 0,

IV. V (a0, a1, a2; 4) = {za00 + za11 z2 + z0z
a2
2 }, a0 > 1, a1, a2 > 0,
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V. V (a0, a1, a2; 5) = {za00 z1 + za11 z2 + z0z
a2
2 }, a0, a1, a2 > 0,

VI. V (a0, a1, a2; 6) = {za00 + z0z
a1
1 + z0z

a2
2 + zb11 zb22 }

a0 > 1, a1, a2, b1, b2 > 0 satisfies (a0 − 1)(a1b2 + a2b1) = a0a1a2,

VII. V (a0, a1, a2; 7) = {za00 z1 + z0z
a1
1 + z0z

a2
2 + zb11 zb22 }

a0, a1, a2, b1, b2 > 0 satisfies (a0 − 1)(a1b2 + a2b1) = a2(a0a1 − 1).

Xu and Yau [16] proved that the above deformation is actually a topological trivial deformation
as a pair (S2n+1,KV ). Therefore any isolated quasi-homogeneous surface singularity has the
same topological type of one of the seven classes above. Let ∆V (z) denote the characteristic
polynomial of the Milnor fibration of (V, 0).

Theorem 1.3 ([16]). If (V, 0) and (W, 0) are among the seven classes above, then (C3, V, 0) is
biholomorphic to (C3,W, 0) if and only if (C3, V, 0) is homeomorphic to (C3,W, 0) with some
exceptional cases. And (C3, V, 0) is homeomorphic to (C3,W, 0) if and only if π1(KV ) ' π1(KW )

and ∆V (z) = ∆W (z).

The following are direct corollaries of the above theorem:

Corollary 1.4 ([16]). Let (V, 0) and (W, 0) be two isolated quasi-homogeneous surface singu-
larities in C3. Then (C3, V, 0) is homeomorphic to (C3,W, 0) if and only if π1(KV ) ' π1(KW )

and ∆V (z) = ∆W (z).

Corollary 1.5 ([16]). Let (V, 0) be an isolated quasi-homogeneous surface singularity with
weights (w0, w1, w2). Then the topological type of (V, 0) determines and is determined by its
weights (w0, w1, w2).

Corollary 1.6 ([16]). Let (V, 0) be an isolated singularity defined by a quasi-homogeneous
polynomial in C3 with weights (w0, w1, w2). Then the fundamental group of the link π1(KV ) and
the characteristic polynomial ∆V (z) determine and are determined by the weights (w0, w1, w2).

And the original motivation of their paper is to prove the Zariski conjecture (cf. [19]) for
isolated quasi-homogeneous surface singularities in C3 : multiplicity is an invariant of topological
type. As a corollary, they proved:

Corollary 1.7 ([16]). Let (V, 0) and (W, 0) be two isolated quasi-homogeneous surface singular-
ities in C3. If (C3, V, 0) is homeomorphic to (C3,W, 0), then V and W have the same multiplicity
at the origin.

Recall that in our former paper [9], we proved that a series new invariants Hodge moduli
algebras and Hodge moduli sequence of the singularity are complete contact invariants for simple
surface singularities. And our final aim is to extend this result to isolated quasi-homogeneous
surface singularities or even more general types of singularity. Note that in the proof of the
above theorems, characteristic polynomial of the singularity plays a fundamental role, since
characteristic polynomial is a topological invariant of the singularity. Motivated by these results
and our former results, it is natural to ask whether we can replace characteristic polynomial
by Hodge ideals and Hodge moduli algebras of the singularity to determine the weights of the
polynomials defining the singularities. That is, we want to prove if the ith Hodge moduli algebras
of two isolated quasi-homogeneous curve singularities are isomorphic, ∀i ≥ 0, then the weights
of these two singularities are the same.

If h(x, y) is a quasi-homogeneous polynomial in C2 and V = {h(x, y) = 0} has an isolated
singularity at the origin, then V can be deformed into one of the following three classes below
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while keeping the differentiable structure of the link KV = S2n+1
ϵ ∩ V constant.

F1(x, y) = xa + yb, a, b ≥ 2,

F2(x, y) = xa + xyb, a ≥ 2, b ≥ 1,

F3(x, y) = xay + xyb, a, b ≥ 1.

After a tedious calculation for Hodge ideals and Hodge moduli algebras of isolated quasi-
homogeneous curve singularities of the above three types, we obtain the following main theorem
A.

Main Theorem A (0th and 1st Hodge moduli algebras determine weight type).

(1) For isolated quasi-homogeneous curve singularities

D
(a1,b1)
1 = {xa1 + yb1 = 0}, 2 ≤ a1 ≤ b1,

and
D

(a2,b2)
2 = {xa2 + xyb2 = 0}, 1 ≤ a2 − 1 ≤ b2,

if their 0th and 1st Hodge moduli algebras (taking α = 1 in their Hodge ideals) are isomorphic,
i.e.,

M0(D
(a1,b1)
1 ) ' M0(D

(a2,b2)
2 ) M1(D

(a1,b1)
1 ) ' M1(D

(a2,b2)
2 ),

then the weight types of D(a1,b1)
1 and D

(a2,b2)
2 are the same, i.e.,

wt(F (a1,b1)
1 ) = wt(F (a2,b2)

2 ).

(2) For isolated quasi-homogeneous curve singularities

D
(a2,b2)
2 = {xa2 + xyb2 = 0}, a2 − 1 ≥ b2 ≥ 1,

and
D

(a3,b3)
3 = {xa3y + xyb3 = 0}, 1 ≤ a3 ≤ b3,

if their 0th and 1st Hodge moduli algebras (taking α = 1 in their Hodge ideals) are isomorphic,
i.e.,

M0(D
(a2,b2)
2 ) ' M0(D

(a3,b3)
3 ) M1(D

(a2,b2)
2 ) ' M1(D

(a3,b3)
3 ),

then the weight type of D(a2,b2)
2 and D

(a3,b3)
3 are the same, i.e.,

wt(F (a1,b1)
1 ) = wt(F (a3,b3)

3 ).

(3) For isolated quasi-homogeneous curve singularities

D
(a1,b1)
1 = {xa1 + yb1 = 0}, a1, b1 ≥ 2,

and
D

(a3,b3)
3 = {xa3y + xyb3 = 0}, a3, b3 ≥ 1,

their ith Hodge moduli algebras (taking α = 1 in their Hodge ideals) are not isomorphic, for
i = 0, 1 respectively.

As a by-product, we obtain an inequality of the δ-invariant, 0th Hodge moduli number and
multiplicity for isolated quasi-homogeneous curve singularities of the above three types:
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Main Theorem B.

(1) For isolated quasi-homogeneous curve singularities D
(a,b)
1 = {xa + yb = 0}, a, b ≥ 2, we

have an inequality
0 ≤ δ1(a, b)−m0(D

(a,b)
1 ) ≤ mt(D(a,b)

1 ),

where δ1(a, b) is the δ-invariant of D
(a,b)
1 ,m0(D

(a,b)
1 ) is the 0th Hodge moduli number of the

divisor D
(a,b)
1 for α = 1 and mt(D(a,b)

1 ) is the multiplicity of D(a,b)
1 .

(2) For isolated quasi-homogeneous curve singularities D
(a,b)
2 = {xa + xyb = 0}, a ≥ 2, b ≥ 1,

we have an inequality
1 ≤ δ2(a, b)−m0(D

(a,b)
2 ) ≤ mt(D(a,b)

2 ),

where δ2(a, b) is the δ-invariant of D
(a,b)
2 ,m0(D

(a,b)
2 ) is the 0th Hodge moduli number of the

divisor D
(a,b)
2 for α = 1 and mt(D(a,b)

2 ) is the multiplicity of D(a,b)
2 .

(3) For isolated quasi-homogeneous curve singularities D
(a,b)
3 = {xay + xyb = 0}, a, b ≥ 1, we

have an inequality
2 ≤ δ3(a, b)−m0(D

(a,b)
3 ) ≤ mt(D(a,b)

3 ),

where δ3(a, b) is the δ-invariant of D
(a,b)
3 ,m0(D

(a,b)
3 ) is the 0th Hodge moduli number of the

divisor D
(a,b)
3 for α = 1 and mt(D(a,b)

3 ) is the multiplicity of D(a,b)
3 .

In the second section, we recall a number of classical results on the Hodge ideals of effective
Q-divisors and the δ-invariants of curve singularities. We also collect some important lemmas
and theorems that will be used in the following parts. In the third section, we explicitly calcu-
late Hodge ideals and Hodge moduli algebras of isolated quasi-homogeneous curve singularities
of three types. In the fourth and fifth sections we prove our main theorems A and B by the
results in the third section. Finally, in the last section, we give some examples to explain Hodge
moduli algebras and Hodge moduli sequence are better invariants than characteristic polyno-
mial (topological invariant of singularity) for non-degenerate quasi-homogeneous singularities.
Furthermore, from the observation of some examples, we raise a conjecture that the Hodge
moduli numbers of isolated quasi-homogeneous curve singularities remain constant under semi-
quasihomogeneous deformation. That is, Hodge moduli numbers of isolated quasi-homogeneous
curve singularities only depend on the weights of the singularities.

2. Preliminaries

2.1. Hodge ideals. In [7] and [8], the authors extend the notion of Hodge ideals to the case
when D is an arbitrary effective Q-divisor on X, where X is a smooth complex variety. Hodge
ideals {Ik(D)}k∈N are defined in terms of the Hodge filtration F• on some DX -module associated
with D (cf. [7], §2 − §4 for more details). When D is an integral and blackuced divisor, this
recovers the definition of Hodge ideals Ik(D) in [5].

Let X be a smooth complex variety, and DX be the sheaf of differential operators on X. If
H is an integral and blackuced effective divisor on X, D = αH,α ∈ Q ∩ (0, 1], let OX(∗D) be
the sheaf of rational functions with poles along D. It is also a left DX -module underlying the
mixed Hodge module j∗QH

U [n], where U = X\D and j : U ↪→ X is the inclusion map. Any
DX -module associated with a mixed Hodge module has a good filtration F•, the Hodge filtration
of the mixed Hodge module [14].
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To study the Hodge filtration of OX(∗D), it seems easier to consider a series of ideal sheaves,
defined by Mustaţǎ and Popa [5], which can be consideblack to be a generalization of multiplier
ideals of divisors. The Hodge ideals {Ik(D)}k∈N of the divisor D are defined by:

FkOX(∗D) = Ik(D)⊗ OX

(
(k + 1)D

)
, for all k ∈ N.

These are coherent sheaves of ideals. See [5] for details and an extensive study of the ideals
Ik(D). Hodge ideals are indexed by the non-negative integers; at the 0-th step, they essentially
coincide with multiplier ideals. It turns out that I0(D) = J ((1 − ε)D), the multiplier ideal
of the divisor (1 − ε)D, 0 < ε � 1. The multiplier ideal sheaves are ubiquitous objects in
birational geometry, encoding local numerical invariants of singularities, and satisfying Kodaira-
type vanishing theorems in the global setting. The Hodge ideals are interesting invariants of the
singularities, they have similar properties as multiplier ideals.

We summarize the properties and results (cf. [6] and[7]) of Hodge ideals as follows:
Given a blackuced effective divisor H on a smooth complex variety X, D = αH,α ∈ Q∩(0, 1],

we also denote by Z the support of D. The sequence of Hodge ideals Ik(D), with k ≥ 0, satisfies:

• I0(D) is the multiplier ideal I((1− ε)D), so in particular I0(D) = OX if and only if the
pair(X,D) is log canonically.

• When Z has simple normal crossings, then

Ik(D) = Ik(Z)⊗ OX(Z − dDe),

where Ik(Z) can be computed explicitly as in [5]. If Z is smooth, then Ik(D) = OX(Z −
dDe).

• The Hodge filtration is generated at level n− 1, where n = dimX, i.e.,

FℓDX ·
(
Ik(D)⊗ OX(kZ)h−α

)
= Ik+ℓ(D)⊗ OX((k + `)Z)h−α

for all k ⩾ n− 1 and ` ⩾ 0.
• There are non-triviality criteria for Ik(D) at a point x ∈ D in terms of the multiplicity

of D at x.
• If X is projective, Ik(D) satisfy a vanishing theorem analogous to Nadel Vanishing for

multiplier ideals.
• If Y is a smooth divisor in X such that Z|Y is blackuced, then Ik(D) satisfy

Ik (D|Y ) ⊆ Ik(D) · OY ,

with equality when Y is general.
• If X → T is a smooth family with a section s : T → X, and D is a relative divisor on X

that satisfies a suitable condition then{
t ∈ T | Ik (Dt) ⊈ mq

s(t)

}
is an open subset of T , for each q ⩾ 1.

• If D1 and D2 are Q-divisors with supports Z1 and Z2, such that Z1+Z2 is also blackuced,
then the subadditivity property

Ik (D1 +D2) ⊆ Ik (D1) · Ik (D2)

holds.

For comparison, the list of properties of Hodge ideals in the case when D is blackuced is
summarized in [11]. The setting of Q-divisors is more intricate. For instance, the bounds for the
generation level of the Hodge filtration can become worse. Moreover, it is not known whether the
inclusions Ik(D) ⊆ Ik−1(D) continue to hold for arbitrary Q-divisors. New phenomena appear
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as well: given two rational numbers α1 < α2, usually the ideals Ik (α1Z) and Ik (α2Z) cannot
be compablack for k ⩾ 1, unlike in the case of multiplier ideals.

We recall the following definition.

Definition 2.1. Let f, g ∈ R = C{x1, . . . , xn} which is the convergent power series ring. We
say f and g are contact equivalent if the local C-algebras R/(f) and R/(g) are isomorphic.

Definition 2.2. Let f : (Cn, 0) −→ (C, 0), n ≥ 2, be an isolated hypersurface singularity. Let
H = {f = 0} be an integral and blackuced effective divisor defined by f,Dα = αH,α ∈ Q∩(0, 1].
We define the i-th Hodge moduli algebra of Dα to be the moduli algebra of the ideal Ji(Dα) :=

(f) + Ii(D
α) (or Ji for short)

Mi(D
α) := C{x1, . . . , xn}/Ji(Dα)

for i ≥ 0 (or Mi for short), where Ii(D
α) be the i-th Hodge ideal (or Ii for short). The i-th

Hodge moduli number of Dα is defined to be

mi(D
α) := dimC(Mi(D

α))

for i ≥ 0 (or mi for short). We define the Hodge moduli sequence of D to be the sequence

{mi} := {m0,m1,m2, . . . }.

Definition 2.3. A polynomial f ∈ C[x1, · · · , xn] is called weighted homogeneous if there exists
positive rational numbers w1, · · · , wn (i.e., weights of x1, · · · , xn) and d such that,

∑
aiwi = d

for each monomial
∏

xaii appearing in f with a non-zero coefficient. The number d is called
the weighted homogeneous degree (w-deg) of f for weights wj , 1 ≤ j ≤ n. These wj , 1 ≤ j ≤ n

called the weight type of f.

The Hodge filtration F• of OX(∗D) is usually hard to describe. However, it does have an
explicit formula in the case when D is defined by a blackuced weighted homogeneous polynomial
f which has an isolated singularity at the origin, which is proved by M. Saito [15]. To state
Saito’s result, we first clarify the notations as follows. We denote

• O = C {x1, . . . , xn} the ring of germs of holomorphic function for local coordinates
x1, . . . , xn.

• f : (Cn, 0) → (C, 0) a germ of holomorphic function that is quasi-homogeneous, i.e., f ∈
J (f) =

(
∂f
∂x1

, . . . , ∂f
∂xn

)
, and with an isolated singularity at the origin. Kyoji Saito [12]

showed that after a biholomorphic coordinate change, we can assume f is a weighted
homogeneous polynomial with an isolated singularity at the origin. We will keep this
assumption for f unless otherwise stated.

• w = w(f) = (w1, . . . , wn) the weights of the weighted homogeneous polynomial f .
• g : (Cn, 0) → (C, 0) a germ of a holomorphic function, and we write

g =
∑
A∈Nn

gAx
A,

where A = (a1, . . . , an) , gA ∈ C and xA = xa11 · · ·xann .
• ρ(g) the weight of an element g ∈ O defined by

ρ(g) =

(
m∑
i=1

wi

)
+ inf {〈w,A〉 : gA 6= 0} .
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The weight function ρ defines a filtration on O as
O>k = {u ∈ O : ρ(u) > k},
O≥k = {u ∈ O : ρ(u) ≥ k}.

Since we consider DX -modules locally around the isolated singularity, so we can assume
X = Cn and identify the stalk at the singularity to be that of DX -modules on Cn. For example,
we replace FkOX,0(∗D) with FkOX(∗D). Now we can state the formula proved by M. Saito (see
[15], Theorem 0.7):

FkOX(∗D) =

k∑
i=0

Fk−iDX

(
O≥i+1

f i+1

)
, ∀k ∈ N. (1)

Since the Hodge filtration can be constructed on analogous DX -modules associated with any
effective Q-divisor D, so it satisfies a similar formula in the case when D is supported on a
hypersurface defined by such a polynomial f .

Assume that the divisor is D = αZ, where 0 < α ≤ 1 and Z = {f = 0} is an integral and
blackuced effective divisor defined by f , a weighted homogeneous polynomial with an isolated
singularity at the origin. In this case, the associated DX -module is the well-known twisted
localization DX -module M

(
f1−α

)
:= OX(∗Z)f1−α (see more details in [7] about how to con-

struct the Hodge filtration F•M
(
f1−α

))
. With new ingblackients from Mustaţǎ and Popa’s [8],

where this Hodge filtration is compablack to the V -filtration on M
(
f1−α

)
, M. Zhang generalized

Saito’s formula and proved the following theorem:

Theorem 2.4. (Zhang, [20]) If D = αZ, where 0 < α ≤ 1 and Z = {f = 0} is an integral and
blackuced effective divisor defined by f , a weighted homogeneous polynomial with an isolated
singularity at the origin, then we have

FkM
(
f1−α

)
=

k∑
i=0

Fk−iDX

(
O≥α+i

f i+1
f1−α

)
,

where the action · of DX on the right hand side is the action on the left DX -module M
(
f1−α

)
defined by

D ·
(
wf1−α

)
:=

(
D(w) + w

(1− α)D(f)

f

)
f1−α, for any D ∈ DerCOX .

Notice that if we set α = 1, Theorem 2.4 recovers Saito’s formula (1) mentioned above. For
any polynomial f with an isolated singularity at the origin, it is well-known that the Milnor
algebra

Af := C {x1, . . . , xn} / (∂1f, . . . , ∂nf)
is a finite-dimensional C-vector space. Fix a monomial basis {v1, . . . , vµ} for this vector space,
where µ is the dimension of Af (i.e., Milnor number). The following theorem follows from
Theorem 2.4.

Theorem 2.5. (Zhang, [20]) If D = αZ, where 0 < α ≤ 1 and Z = {f = 0} is an integral and
blackuced effective divisor defined by f , a weighted homogeneous polynomial with an isolated
singularity at the origin, then we have

F0M(f1−α) = f−1 · O≥αf1−α

and
FkM(f1−α) = (f−1 ·

∑
vj∈O≥k+1+α

OX · vj)f1−α + F1DX · Fk−1M(f1−α).
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Alternatively, in terms of Hodge ideals, these formulas say that
I0(D) = O≥α

and
Ik+1(D) =

∑
vj∈O≥k+1+α

OX · vj +
∑

1≤i≤n,a∈Ik(D)

OX(f∂ia− (α+ k)a∂if).

2.2. Delta invariant of curve singularities.
Definition 2.6 (δ-invariant). Let f ∈ C{x, y} be a blackuced convergent power series, and let

O = C{x, y}/〈f〉 ↪→ O

denote the normalization. Then we call
δ(f) := dimCO/O

the δ-invariant of f.

Although We can explicitly calculate the δ-invariants of isolated quasi-homogeneous singular-
ities of three types F1, F2, F3, by blowing up singularities and using the above theorem. We use
lemma 2.7, which a very useful equality of the Milnor number,the δ-invariant and the number
of irblackucible factors of a curve singularity {f = 0}, to show the following lemmas 2.8, 2.9,
and 2.10. And we only give proof for lemma 2.8 for simplicity, since the proof for lemmas 2.9,
and 2.10 are similar.
Lemma 2.7 ([2], proposition 3.35). Let f ∈ m ⊆ C{x, y} be blackuced. Then

µ(f) = 2δ(f)− r(f) + 1,

where µ(f) is the Milnor number of f, δ(f) is the δ-invariant of f and r(f) is the number of
irblackucible factors of f.

Lemma 2.8. For isolated quasi-homogeneous curve singularities D(a,b)
1 = {xa+yb = 0}, defined

by F
(a,b)
1 = xa + yb, a, b ≥ 2, its δ-invariant is

δ1(a, b) =
(a− 1)(b− 1) + gcd(a, b)− 1

2
.

In particular, δ1(a, b) = (a−1)(b−1)
2 , if gcd(a, b) = 1.

Proof. Since µ(f) = (a− 1)(b− 1) and r(f) = gcd(a, b). We have

δ1(a, b) =
1

2
(µ(f) + r(f)− 1) =

(a− 1)(b− 1) + gcd(a, b)− 1

2
.

□
Lemma 2.9. For isolated quasi-homogeneous curve singularities D

(a,b)
2 = {xa + xyb = 0},

defined by F
(a,b)
2 = xa + xyb, a ≥ 2, b ≥ 1, its δ-invariant is

δ2(a, b) =
a(b− 1) + gcd(a− 1, b) + 1

2
.

In particular, δ2(a, b) = a(b−1)+2
2 , if gcd(a− 1, b) = 1.

Lemma 2.10. For isolated quasi-homogeneous curve singularities D
(a,b)
3 = {xay + xyb = 0},

defined by F
(a,b)
3 = xay + xyb, a, b ≥ 1, its δ-invariant is

δ3(a, b) =
ab+ gcd(a− 1, b− 1) + 1

2
.

In particular, δ3(a, b) = ab+2
2 , if gcd(a− 1, b− 1) = 1.
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3. The first two Hodge ideals of three types isolated quasi-homogeneous curve
singularities

In this section, we compute Hodge ideals of three types isolated quasi-homogeneous curve
singularities for α = 1 in theorem 2.5. And OX = C{x, y} in the following computation. The
following lemma is used in the computation of dimensions of Hodge moduli algebras.

Lemma 3.1. For n,m ∈ N, n,m ≥ 1,

n−1∑
i=1

[
mi

n
] =

(m− 1)(n− 1) + gcd(m,n)− 1

2
,

For isolated quasi-homogeneous curve singularities D(a,b)
1 = {xa+yb = 0}, defined by F

(a,b)
1 =

xa + yb. If a ≤ b, let r = a
gcd(a,b) , then 1 ≤ r ≤ a. Since 1+a−1

a + 1
b ≥ 1, we have xa−1 ∈ I0(D1).

And We have
xk−1y[

b(a−k)
a

] ∈ I0(D1), ∀1 ≤ k ≤ a− 1, r ∤ k,
and

xir−1yb−
ibr
a

−1 ∈ I0(D1), ∀1 ≤ i ≤ gcd(a, b)− 1.

So the 0th Hodge ideal for D1 is

J0(D1) = I0(D1) =(xa−1, xa−2y[
b
a
], . . . , xa−ry[

b(r−1)
a

],

...

xir−1yb−
ibr
a

−1, xir−2y[
b(a−ir+1)

a
], . . . , x(i−1)ry[

b(a−(i−1)r−1)
a

],

...

xr−1yb−
br
a
−1, xr−2y[

b(a−r+1)
a

], . . . , y[
b(a−1)

a
]),

where 1 ≤ i ≤ gcd(a, b) − 1. It’s multiplicity mt(J0(D1)) = a − 1. Using lemma 3.1, we obtain
the dimension of the 0th Hodge moduli algebra M0(D1) = OX/J0(D1)

m0(D1) =
a−1∑
i=1

[
bi

a
]− (gcd(a, b)− 1)

=
(a− 1)(b− 1) + gcd(a, b)− 1

2
− (gcd(a, b)− 1)

=
(a− 1)(b− 1)− gcd(a, b) + 1

2
.

And the 1st Hodge ideal of D1 is

J1(D1) =(f) + I0(D1) · (Jf)

=(xa + yb,

xa−2yb, xa−3y[
b
a
]+b, . . . , xa−r−1y[

b(r−1)
a

]+b,

...

xir−2y2b−
ibr
a

−1, . . . , x(i−1)r−1y[
b(a−(i−1)r−1)

a
]+b,

...

xr−2y2b−
br
a
−1, . . . , y[

b(a−2)
a

]+b, xa−1y[
b(a−1)

a
]),
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where 2 ≤ i ≤ gcd(a, b). It’s multiplicity mt(J1(D1)) = a. And by lemma 3.1, the dimension of
the 1st Hodge moduli algebra M1(D1) = OX/J1(D1) is

m1(D1) =

a−2∑
i=1

([
bi

a
] + b)− (gcd(a, b)− 1) + b+ [

b(a− 1)

a
]

=

a−1∑
i=1

[
bi

a
] + (a− 1)b− (gcd(a, b)− 1)

=
(a− 1)(b− 1) + gcd(a, b)− 1

2
+ (a− 1)b− (gcd(a, b)− 1)

=
(a− 1)(3b− 1)− gcd(a, b) + 1

2
.

If a ≥ b, let r = b
gcd(a,b) , then 1 ≤ r ≤ b. By symmetry of a, b, we obtain the 0th Hodge ideal for

D1

J0(D1) = I0(D1) =(yb−1, yb−2x[
a
b
], . . . , yb−rx[

a(r−1)
b

],

...

yir−1xa−
iar
b

−1, yir−2x[
a(b−ir+1)

b
], . . . , y(i−1)rx[

a(b−(i−1)r−1)
b

],

...

yr−1xa−
ar
b
−1, yr−2x[

a(b−r+1)
b

], . . . , x[
a(b−1)

b
]),

where 1 ≤ i ≤ gcd(a, b) − 1. It’s multiplicity mt(J0(D1)) = b − 1. And by lemma 3.1, the
dimension of the 1st Hodge moduli algebra M0(D1) = OX/J0(D1) is

m0(D1) =
b−1∑
i=1

[
ai

b
]− (gcd(a, b)− 1)

=
(a− 1)(b− 1) + gcd(a, b)− 1

2
− (gcd(a, b)− 1)

=
(a− 1)(b− 1)− gcd(a, b) + 1

2
.

And the 1st Hodge ideal for D1 is

J1(D1) =(f) + I0(D1) · (Jf)

=(xa + yb,

yb−2xa, yb−3x[
a
b
]+a, . . . , yb−r−1x[

a(r−1)
b

]+a,

...

yir−2x2a−
iar
b

−1, . . . , y(i−1)r−1x[
a(b−(i−1)r−1)

b
]+a,

...

yr−2x2a−
ar
b
−1, . . . , x[

a(b−2)
b

]+a, yb−1x[
a(b−1)

b
]),

where 2 ≤ i ≤ gcd(a, b). It’s multiplicity mt(J1(D1)) = b. And by lemma 3.1, the dimension of
the 1st Hodge moduli algebra M1(D1) = OX/J1(D1) is

m1(D1) =

b−2∑
i=1

([
ai

b
] + a)− (gcd(a, b)− 1) + a+ [

a(b− 1)

b
]
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=
b−1∑
i=1

[
ai

b
] + (b− 1)a− (gcd(a, b)− 1)

=
(a− 1)(b− 1) + gcd(a, b)− 1

2
+ (b− 1)a− (gcd(a, b)− 1)

=
(3a− 1)(b− 1)− gcd(a, b) + 1

2
.

For isolated quasi-homogeneous curve singularities D(a,b)
2 = {xa+xyb = 0}, defined by F

(a,b)
2 =

xa + xyb. If a − 1 ≤ b, let r = a−1
gcd(a−1,b) , then 1 ≤ r ≤ a − 1. Since 1+a−1

a + a−1
ab ≥ 1, we have

xa−1 ∈ I0(D2). And We have

xky[
b(a−k−1)

a−1
] ∈ I0(D2), ∀1 ≤ k ≤ a− 1, r ∤ k,

and
xiryb−

ibr
a−1

−1 ∈ I0(D2), ∀1 ≤ i ≤ gcd(a− 1, b)− 1.

Since 1
a + (a−1)(1+b−1)

ab ≥ 1, we have yb−1 ∈ I0(D2). So the 0th Hodge ideal for D2 is

J0(D2) =I0(D2)

=(xa−1, xa−2y[
b

a−1
], . . . , xa−ry[

b(r−1)
a−1

],

...

xiryb−
ibr
a−1

−1, xir−1y[
b(a−ir)
a−1

], . . . , x(i−1)r+1y[
b(a−((i−1)r+1)−1)

a−1
],

...

xryb−
br

a−1
−1, xr−1y[

b(a−r)
a−1

], . . . , xy[
b(a−2)
a−1

],

yb−1),

where 1 ≤ i ≤ gcd(a − 1, b) − 1. It’s multiplicity mt(J0(D2)) = a − 1. And by lemma 3.1, the
dimension of the 0th Hodge moduli algebra M0(D2) = OX/J0(D2) is

m0(D2) =
a−2∑
i=1

[
bi

a− 1
]− (gcd(a− 1, b)− 1) + b− 1

=
(a− 2)(b− 1) + gcd(a− 1, b)− 1

2
− (gcd(a, b)− 1) + b− 1

=
a(b− 1)− gcd(a− 1, b) + 1

2
.

And the 1st Hodge ideal of D2 is

J1(D2) =(f) + I0(D2) · (Jf)

=(xa + xyb, axa−1yb−1 + y2b−1

xa−1yb, xa−2y[
b

a−1
]+b, . . . , xa−ry[

b(r−1)
a−1

]+b,

...

xiry2b−
ibr
a−1

−1, . . . , x(i−1)r+1y[
b(a−((i−1)r+1)−1)

a−1
]+b,

...

xry2b−
br

a−1
−1, . . . , xy[

b(a−2)
a−1

]+b),
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where 1 ≤ i ≤ gcd(a − 1, b) − 1. It’s multiplicity mt(J1(D2)) = a. And by lemma 3.1, the
dimension of the 1st Hodge moduli algebra M1(D2) = OX/J1(D2) is

m1(D2)

= 2b− 1 +

a−2∑
i=1

([
bi

a− 1
] + b)− (gcd(a− 1, b)− 1) + b

=
(a− 2)(b− 1) + gcd(a− 1, b)− 1

2
+ (a− 2)b+ 3b− 1− (gcd(a− 1, b)− 1)

=
a(3b− 1)− gcd(a− 1, b) + 1

2
.

If a−1 ≥ b, let r = b
gcd(a−1,b) , then 1 ≤ r ≤ b. Since 1

a +
(a−1)(1+b−1)

ab ≥ 1, we have yb−1 ∈ I0(D2).

And we have
x[

(a−1)(b−k)
b

]+1yk−1 ∈ I0(D2), ∀1 ≤ k ≤ b, r ∤ k,
and

xa−1− i(a−1)r
b ∈ I0(D2), ∀1 ≤ i ≤ gcd(a− 1, b).

So the 0th Hodge ideal for D2 is

J0(D2) =I0(D2)

=(x[
(a−1)(b−1)

b
]+1, x[

(a−1)(b−2)
b

]+1y, . . . , xa−1− (a−1)r
b yr−1,

...

x[
(a−1)(b−(i−1)r−1)

b
]+1y(i−1)r, x[

(a−1)(b−(i−1)r−2)
b

]+1y(i−1)r+1, . . . , xa−1− i(a−1)r
b yir−1,

...

x[
(a−1)(r−1)

b
]+1yb−r, x[

(a−1)(r−2)
b

]+1yb−r+1, . . . , yb−1),

where 1 ≤ i ≤ gcd(a − 1, b). It’s multiplicity mt(J0(D2)) = b − 1. And by lemma 3.1, the
dimension of the 0th Hodge moduli algebra M0(D2) = OX/J0(D2) is

m0(D2) =
b−1∑
i=1

([
(a− 1)i

b
] + 1)− (gcd(a− 1, b)− 1)

=
(a− 2)(b− 1) + gcd(a− 1, b)− 1

2
+ b− 1− (gcd(a− 1, b)− 1)

=
a(b− 1)− gcd(a− 1, b) + 1

2
.

And the 1st Hodge ideal of D2 is

J1(D2) =(f) + I0(D2) · (Jf)

=(xa + xyb, axa−1yb−1 + y2b−1,

x[
(a−1)(b−1)

b
]+2yb−1, x[

(a−1)(b−2)
b

]+2yb, . . . , xa−
(a−1)r

b yb+r−2,

...

x[
(a−1)(b−(i−1)r−1)

b
]+2yb+(i−1)r−1, x[

(a−1)(b−(i−1)r−2)
b

]+2yb+(i−1)r, . . . , xa−
i(a−1)r

b yb+ir−2,

...
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x[
(a−1)(r−1)

b
]+2y2b−r−1, x[

(a−1)(r−2)
b

]+2y2b−r, . . . , xy2b−2),

where 1 ≤ i ≤ gcd(a − 1, b). It’s multiplicity mt(J1(D2)) = b + 1. And by lemma 3.1, the
dimension of the 1st Hodge moduli algebra M1(D2) = OX/J1(D2) is

m1(D2) = a(b− 1) +

b−1∑
i=1

([
(a− 1)i

b
] + 2)− (gcd(a− 1, b)− 1) + 1

= (a+ 2)(b− 1) +
(a− 2)(b− 1) + gcd(a− 1, b)− 1

2
− (gcd(a− 1, b)− 1) + 1

=
(3a+ 2)(b− 1)− gcd(a− 1, b) + 3

2
.

For isolated quasi-homogeneous curve singularities D
(a,b)
3 = {xay + xyb = 0}, defined by

F
(a,b)
3 = xay+xyb. If a ≤ b, let r = a−1

gcd(a−1,b−1) , then 1 ≤ r ≤ a−1. Since (b−1)(1+a−1)
ab−1 + a−1

ab−1 ≥ 1,

we have xa−1 ∈ I0(D3). And we have

xky[
(b−1)(a−1−k)

a−1
]+1 ∈ I0(D3), ∀1 ≤ k ≤ a− 2, r ∤ k,

and
xiryb−1− i(b−1)r

a−1 ∈ I0(D3), ∀1 ≤ i ≤ gcd(a− 1, b− 1)− 1.

So the 0th Hodge ideal for D3 is

J0(D3) =I0(D3)

=(xa−1, xa−2y[
b−1
a−1

]+1, . . . , xa−ry[
(b−1)(r−1)

a−1
]+1,

...

xiryb−1− i(b−1)r
a−1 , xir−1y[

(b−1)(a−ir)
a−1

]+1, . . . , x(i−1)r+1y[
(b−1)(a−1−(i−1)r−1)

a−1
]+1,

...

xryb−1− (b−1)r
a−1 , xr−1y[

(b−1)(a−r)
a−1

]+1, . . . , xy[
(b−1)(a−2)

a−1
]+1,

yb−1),

where 1 ≤ i ≤ gcd(a − 1, b − 1). It’s multiplicity mt(J0(D3)) = a − 1. And by lemma 3.1, the
dimension of the 0th Hodge moduli algebra M0(D3) = OX/J0(D3) is

m0(D3)

=

a−2∑
i=1

([
(b− 1)i

a− 1
] + 1)− (gcd(a− 1, b− 1)− 1) + b− 1

=
ab− gcd(a− 1, b− 1)− 1

2
.

And the 1st Hodge ideal of D3 is

J1(D3) =(f) + I0(D3) · (Jf)

=(xay + xyb, x2a−1, y2b−1

x2a−2y, . . . , x2a−r−1y[
(b−1)(r−1)

a−1
]+2,

...

xa−1+iryb−
i(b−1)r
a−1 , . . . , xa+(i−1)ry[

(b−1)(a−1−(i−1)r−1)
a−1

]+2,
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...

xa−1+ryb−
(b−1)r
a−1 , . . . , xay[

(b−1)(a−2)
a−1

]+2),

where 1 ≤ i ≤ gcd(a − 1, b − 1). It’s multiplicity mt(J1(D3)) = a + 1. And by lemma 3.1, the
dimension of the 1st Hodge moduli algebra M1(D3) = OX/J1(D3) is

m1(D3)

= (2b− 1) + (a− 2)b+ b+

a−2∑
i=1

([
(b− 1)i

a− 1
] + 2)− (gcd(a− 1, b− 1)− 1) + 1

=
a(3b+ 2)− gcd(a− 1, b− 1)− 3

2
.

If a ≥ b, let r = b−1
gcd(a−1,b−1) , then 1 ≤ r ≤ b− 1. By symmetry of a, b, we obtain the 0th Hodge

ideal

J0(D3) =I0(D3)

=(yb−1, yb−2x[
a−1
b−1

]+1, . . . , yb−rx[
(a−1)(r−1)

b−1
]+1,

...

yirxa−1− i(a−1)r
b−1 , yir−1x[

(a−1)(b−ir)
b−1

]+1, . . . , y(i−1)r+1x[
(a−1)(b−1−(i−1)r−1)

b−1
]+1,

...

yrxa−1− (a−1)r
b−1 , yr−1x[

(a−1)(b−r)
b−1

]+1, . . . , yx[
(a−1)(b−2)

b−1
]+1,

xa−1),

where 1 ≤ i ≤ gcd(a − 1, b − 1). It’s multiplicity mt(J0(D3)) = b − 1. And by lemma 3.1, the
dimension of the 0th Hodge moduli algebra M0(D3) = OX/J0(D3) is

m0(D3)

=
b−2∑
i=1

([
(a− 1)i

b− 1
] + 1)− (gcd(a− 1, b− 1)− 1) + a− 1

=
ab− gcd(a− 1, b− 1)− 1

2
.

And the 1st Hodge ideal of D3 is

J1(D3) =(f) + I0(D3) · (Jf)

=(xay + xyb, x2a−1, y2b−1

y2b−2x, . . . , y2b−r−1x[
(a−1)(r−1)

b−1
]+2,

...

yb−1+irxa−
i(a−1)r

b−1 , . . . , yb+(i−1)rx[
(a−1)(b−1−(i−1)r−1)

b−1
]+2,

...

yb−1+rxa−
(a−1)r
b−1 , . . . , yax[

(a−1)(b−2)
b−1

]+2),
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where 1 ≤ i ≤ gcd(a − 1, b − 1). It’s multiplicity mt(J1(D3)) = b + 1. And by lemma 3.1, the
dimension of the 1st Hodge moduli algebra M0(D3) = OX/J1(D3) is

m1(D3)

= (2a− 1) + (b− 2)a+ a+

b−2∑
i=1

([
(a− 1)i

b− 1
] + 2)− (gcd(a− 1, b− 1)− 1) + 1

=
(3a+ 2)b− gcd(a− 1, b− 1)− 3

2
.

4. Proof of the Main Theorem A

I. Compare singularities of types F1 and F2 :

(1) Suppose for singularities

D1 = {xa1 + yb1 = 0}, 2 ≤ a1 ≤ b1,

D2 = {xa2 + xyb2 = 0}, 1 ≤ a2 − 1 ≤ b2,

their 0th and 1st Hodge moduli algebras are isomorphic, i.e.,

M0(D1) ' M0(D2), M1(D1) ' M1(D2).

By our computation in the third section, we have

mt(J0(D1)) = a1 − 1, mt(J1(D1)) = a1,

m0(D1) =
(a1 − 1)(b1 − 1)− gcd(a1, b1) + 1

2
,

m1(D1) =
(a1 − 1)(3b1 − 1)− gcd(a1, b1) + 1

2
.

And

mt(J0(D2)) = a2 − 1, mt(J1(D2)) = a2,

m0(D2) =
a2(b2 − 1)− gcd(a2 − 1, b2) + 1

2
,

m1(D2) =
a2(3b2 − 1)− gcd(a2 − 1, b2) + 1

2
.

Hence we obtain the following equations
a1 − 1 = a2 − 1

a1 = a2
(a1−1)(b1−1)−gcd(a1,b1)+1

2 = a2(b2−1)−gcd(a2−1,b2)+1
2

(a1−1)(3b1−1)−gcd(a1,b1)+1
2 = a2(3b2−1)−gcd(a2−1,b2)+1

2

,

that is, 
a1 = a2

(a1 − 1)b1 = a2b2

gcd(a1, b1)− gcd(a2 − 1, b2) = a2 − (a1 − 1)

.
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Its solutions are (a1, b1) = (a2, a2m), (a2, b2) = (a2, (a2 − 1)m), where a2,m ∈ N, a2 ≥ 2,m ≥ 1.

And we have

wt(F1) = { 1

a1
,
1

b1
} = { 1

a2
,

1

a2m
},

wt(F2) = { 1

a2
,
a2 − 1

a2b2
} = { 1

a2
,

1

a2m
}.

It follows that wt(F1) = wt(F2). Under these conditions, we obtain

J0(D1) = (xa2−1, xa2−2ym−1, . . . , y(a2−1)m−1),

J0(D2) = (xa2−1, xa2−2ym−1, . . . , y(a2−1)m−1),

i.e., J0(D1) = J0(D2), which shows M0(D1) ' M0(D2) directly.
(2) Suppose for singularities

D1 = {xa1 + yb1 = 0}, 2 ≤ a1 ≤ b1,

D2 = {xa2 + xyb2 = 0}, a2 − 1 ≥ b2 ≥ 1,

their 0th and 1st Hodge moduli algebras are isomorphic, i.e.,

M0(D1) ' M0(D2), M1(D1) ' M1(D2).

By our computation in the third section, we have
mt(J0(D1)) = a1 − 1, mt(J1(D1)) = a1,

m0(D1) =
(a1 − 1)(b1 − 1)− gcd(a1, b1) + 1

2
,

m1(D1) =
(a1 − 1)(3b1 − 1)− gcd(a1, b1) + 1

2
.

And
mt(J0(D2)) = b2 − 1, mt(J1(D2)) = b2 + 1,

m0(D2) =
a2(b2 − 1)− gcd(a2 − 1, b2) + 1

2
,

m1(D2) =
(3a2 + 2)(b2 − 1)− gcd(a2 − 1, b2) + 3

2
.

Hence we obtain the following equations
a1 − 1 = b2 − 1

a1 = b2 + 1
(a1−1)(b1−1)−gcd(a1,b1)+1

2 = a2(b2−1)−gcd(a2−1,b2)+1
2

(a1−1)(3b1−1)−gcd(a1,b1)+1
2 = (3a2+2)(b2−1)−gcd(a2−1,b2)+3

2

.

It has no solution.
II. Compare singularities of types F2 and F3 :

(1) Suppose for singularities

D2 = {xa2 + xyb2 = 0}, a2 − 1 ≥ b2 ≥ 1,

D3 = {xa3y + xyb3 = 0}, 1 ≤ a3 ≤ b3,

their 0th and 1st Hodge moduli algebras are isomorphic, i.e.,

M0(D2) ' M0(D3), M1(D2) ' M1(D3)
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By our computation in the third section, we have

mt(J0(D2)) = b2 − 1, mt(J1(D2)) = b2 + 1,

m0(D2) =
a2(b2 − 1)− gcd(a2 − 1, b2) + 1

2
,

m1(D2) =
(3a2 + 2)(b2 − 1)− gcd(a2 − 1, b2) + 3

2
.

And

mt(J0(D3)) = a3 − 1, mt(J1(D3)) = a3 + 1,

m0(D3) =
a3b3 − gcd(a3 − 1, b3 − 1)− 1

2
,

m1(D3) =
a3(3b3 + 2)− gcd(a3 − 1, b3 − 1)− 3

2
.

Hence we obtain the following equations
b2 − 1 = a3 − 1

b2 + 1 = a3 + 1
a2(b2−1)−gcd(a2−1,b2)+1

2 = a3b3−gcd(a3−1,b3−1)−1
2

(3a2+2)(b2−1)−gcd(a2−1,b2)+3
2 = a3(3b3+2)−gcd(a3−1,b3−1)−3

2

,

that is, 
b2 = a3

a2b2 + b2 − a2 = a3b3 + a3 − 1

gcd(a2 − 1, b2)− gcd(a3 − 1, b3 − 1) = a3 − (b2 − 1)

.

Its solutions are (a2, b2) = (mb2 + 1, b2), (a3, b3) = (b2,m(b2 − 1) + 1), where b2,m ∈ N, b2 ≥
2,m ≥ 1. And we have

wt(F2) = { 1

a2
,
a2 − 1

a2b2
} = { 1

mb2 + 1
,

m

mb2 + 1
},

wt(F3) = { b3 − 1

a3b3 − 1
,
a3 − 1

a3b3 − 1
} = { m

mb2 + 1
,

1

mb2 + 1
}.

It follows that wt(F2) = wt(F3). Under these conditions, we obtain

J0(D2) = (xm(b2−1), xm(b2−2)y, . . . , yb2−1)

J0(D3) = (ym(b2−1), ym(b2−2)x, . . . , xb2−1),

i.e., J0(D2) ' J0(D3), x 7→ y, which shows M0(D1) ' M0(D2) directly.
(2) Suppose for singularities

D2 = {xa2 + xyb2 = 0}, 1 ≤ a2 − 1 ≤ b2,

D3 = {xa3y + xyb3 = 0}, 1 ≤ a3 ≤ b3,

their 0th and 1st Hodge moduli algebras are isomorphic, i.e.,

M0(D2) ' M0(D3), M1(D2) ' M1(D3)
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By our computation in the third section, we have

mt(J0(D2)) = a2 − 1, mt(J1(D2)) = a2,

m0(D2) =
a2(b2 − 1)− gcd(a2 − 1, b2) + 1

2
,

m1(D2) =
a2(3b2 − 1)− gcd(a2 − 1, b2) + 1

2
.

And

mt(J0(D3)) = a3 − 1, mt(J1(D3)) = a3 + 1,

m0(D3) =
a3b3 − gcd(a3 − 1, b3 − 1)− 1

2
,

m1(D3) =
a3(3b3 + 2)− gcd(a3 − 1, b3 − 1)− 3

2
.

Hence we obtain the following equations
a2 − 1 = a3 − 1

a2 = a3 + 1
a2(b2−1)−gcd(a2−1,b2)+1

2 = a3b3−gcd(a3−1,b3−1)−1
2

a2(3b2−1)−gcd(a2−1,b2)+1
2 = a3(3b3+2)−gcd(a3−1,b3−1)−3

2

.

It has no solution.
III. Compare singularities of types F1 and F3 :

(1) Suppose for singularities

D1 = {xa1 + yb1 = 0}, 2 ≤ a1 ≤ b1,

D3 = {xa3y + xyb3 = 0}, 1 ≤ a3 ≤ b3,

their 0th and 1st Hodge moduli algebras are isomorphic, i.e.,

M0(D1) ' M0(D3), M1(D1) ' M1(D3)

By our computation in the third section, we have

mt(J0(D1)) = a1 − 1, mt(J1(D1)) = a1,

m0(D1) =
(a1 − 1)(b1 − 1)− gcd(a1, b1) + 1

2
,

m1(D1) =
(a1 − 1)(3b1 − 1)− gcd(a1, b1) + 1

2
.

And

mt(J0(D3)) = a3 − 1, mt(J1(D3)) = a3 + 1,

m0(D3) =
a3b3 − gcd(a3 − 1, b3 − 1)− 1

2
,

m1(D3) =
a3(3b3 + 2)− gcd(a3 − 1, b3 − 1)− 3

2
.

Hence we obtain the following equations
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a1 − 1 = a3 − 1

a1 = a3 + 1
(a1−1)(b1−1)−gcd(a1,b1)+1

2 = a3b3−gcd(a3−1,b3−1)−1
2

(a1−1)(3b1−1)−gcd(a1,b1)+1
2 = a3(3b3+2)−gcd(a3−1,b3−1)−3

2

.

It has no solutions.
(2) Suppose for singularities

D1 = {xa1 + yb1 = 0}, 2 ≤ a1 ≤ b1,

D3 = {xa3y + xyb3 = 0}, a3 ≥ b3 ≥ 1,

their 0th and 1st Hodge moduli algebras are isomorphic, i.e.,

M0(D1) ' M0(D3), M1(D1) ' M1(D3)

By our computation in the third section, we have
mt(J0(D1)) = a1 − 1, mt(J1(D1)) = a1,

m0(D1) =
(a1 − 1)(b1 − 1)− gcd(a1, b1) + 1

2
,

m1(D1) =
(a1 − 1)(3b1 − 1)− gcd(a1, b1) + 1

2
.

And
mt(J0(D3)) = b3 − 1, mt(J1(D3)) = b3 + 1,

m0(D3) =
a3b3 − gcd(a3 − 1, b3 − 1)− 1

2
,

m1(D3) =
(3a3 + 2)b3 − gcd(a3 − 1, b3 − 1)− 3

2
.

Hence we obtain the following equations
a1 − 1 = b3 − 1

a1 = b3 + 1
(a1−1)(b1−1)−gcd(a1,b1)+1

2 = a3b3−gcd(a3−1,b3−1)−1
2

(a1−1)(3b1−1)−gcd(a1,b1)+1
2 = (3a3+2)b3−gcd(a3−1,b3−1)−3

2

.

It has no solution.

5. Proof of the Main Theorem B

(1) For isolated quasi-homogeneous curve singularity

D
(a,b)
1 = {xa + yb = 0}, a, b ≥ 2,

since the 0th Hodge moduli number is

m0(D
(a,b)
1 ) =

1

2
((a− 1)(b− 1)− gcd(a, b) + 1),

we have
δ1(a, b)−m0(D

(a,b)
1 ) = gcd(a, b)− 1 ≥ 0.

And we also have

δ1(a, b)−m0(D
(a,b)
1 ) = gcd(a, b)− 1 ≤ min{a, b} − 1 = mt(D(a,b)

1 )− 1.
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The equality holds iff min{a, b} = gcd(a, b), i.e., (a, b) = (a, am) or (a, b) = (bm′, b) for some
m,m′ ∈ N.

(2) For isolated quasi-homogeneous curve singularity

D
(a,b)
2 = {xa + xyb = 0}, a ≥ 2, b ≥ 1,

since the 0th Hodge moduli number is

m0(D
(a,b)
2 ) =

1

2
(a(b− 1)− gcd(a− 1, b) + 1),

we have
δ2(a, b)−m0(D

(a,b)
2 ) = gcd(a− 1, b) ≥ 1.

And we also have

δ2(a, b)−m0(D
(a,b)
2 ) = gcd(a− 1, b) ≤ min{a− 1, b} = mt(D(a,b)

2 )− 1.

The equality holds iff min{a−1, b} = gcd(a−1, b), i.e., (a, b) = (a, (a−1)m) or (a, b) = (bm′+1, b)

for some m,m′ ∈ N.
(3) For isolated quasi-homogeneous curve singularity

D
(a,b)
3 = {xay + xyb = 0}, a, b ≥ 1,

since the 0th Hodge moduli number is

m0(D
(a,b)
3 ) =

1

2
(ab− gcd(a− 1, b− 1) + 1),

we have
δ3(a, b)−m0(D

(a,b)
3 ) = gcd(a− 1, b− 1) + 1 ≥ 2.

And we also have

δ3(a, b)−m0(D
(a,b)
3 ) = gcd(a−1, b−1)+1 ≤ min{a−1, b−1}+1 = min{a, b} = mt(D(a,b)

3 )−1.

The equality holds iff min{a − 1, b − 1} = gcd(a − 1, b − 1), i.e., (a, b) = (a, (a − 1)m + 1) or
(a, b) = ((b− 1)m′ + 1, b) for some m,m′ ∈ N.

6. Some examples and conjectures

Example 6.1. Let curve singularities H1 = {x2y+ xy6 = 0} defined by a polynomial f(x, y) =
x2y + xy6, and H2 = {x3y + xy4 = 0} defined by a polynomial g(x, y) = x3y + xy4. Then
f is quasi-homogeneous of weight type ( 5

11 ,
1
11 ; 1) and g is quasi-homogeneous of weight type

( 3
11 ,

2
11 ; 1). In [18], the characteristic polynomials of f and g coincide:

∆f (t) = (t− 1)(t11 − 1) = ∆g(t).

So this tells us that the characteristic polynomial does not determine the weights of the non-
degenerate quasi-homogeneous polynomial defining the singularity.

However, their ith Hodge moduli algebras Mi(D
α) are not isomorphic for i ≥ i0(α), for a

enough big i0(α). Precisely speaking,

Mi(D
α
1 ) 6' Mi(D

α
2 ), ∀i ≥ 1,

where Dα
j = αHj , j = 1, 2, for α = 1. In fact, we just simply observe this result by their Hodge

moduli numbers are different for i ≥ 1 as follows:



THE WEIGHTS OF ISOLATED CURVE SINGULARITIES ARE DETERMINED BY HODGE IDEALS 21

Table 1. Comparison of Hodge moduli sequences

singularity weight type m0(D) m1(D) m2(D) m3(D) m4(D) m5(D)

x2y + xy6 ( 5
11 ,

1
11 ; 1) 5 18 32 46 60 74

x3y + xy4 ( 3
11 ,

2
11 ; 1) 5 19 39 49 64 79

Example 6.2. Let f(z1, · · · , zn, w1, w2) = z21 + · · ·+z2n+w3
1 + w2p

2 , be a quasi-homogeneous
polynomial of weight type (12 , · · · ,

1
2 ,

1
3 ,

1
2p ; 1) with an isolated singularity at the origin for any

p ∈ N. Let n ≥ 0, even and gcd(3, p) = 1. Then we know their characteristic polynomials are

∆f (t) =
t4p + t2p + 1

t2 + t+ 1
, ∀n ≥ 0, even.

Hence ∆f (1) = 1. By Theorem 8.5 in [4], each of their links Kf = Sϵ ∩ {f(z, w) = 0} is a
topological sphere. Thus all Kf for all p, (3, p) = 1, are homeomorphic each other though
f(z1, · · · , zn, w1, w2) are of the different quasi-homogeneous types for all p.

However, their ith Hodge moduli algebras Mi(D
α) are not isomorphic for i ≥ 1, ∀n ≥ 2, where

Dα = {f(z1, · · · , zn, w1, w2) = 0} for α = 1. In fact, we have their 0th Hodge ideal

I0(D) =

{
(1), n ≥ 2, or n = 0, p = 1, 2

(w1, w
i0
2 ), n = 0, p ≥ 4

where i0 = d4p3 e − 1, is the smallest integer bigger than or equal to 4p
3 − 1. Then we compute

their 1st Hodge ideal as follows. For example, if n = 2, we have

I
(2)
1 (D) =

∑
vj∈O≥2

OX · vj +
∑

1≤i≤4,a∈I0(D)

OX(f∂ia− αa∂if)

= (wi1
2 , w1w

j1
2 ) + (z1, z2, w

2
1, w

2p−1
2 )

= (z1, z2, w
2
1, w1w

j1
2 , wi1

2 ),

J
(2)
1 (D) = (f) + I

(2)
1 (D)

= (z1, z2, w
2
1, w1w

j1
2 , wi1

2 ),

where i1 = d4p3 e − 1 and j1 = d2p3 e − 1. And if n = 4, we have

I
(4)
1 (D) =

∑
vj∈O≥2

OX · vj +
∑

1≤i≤6,a∈I0(D)

OX(f∂ia− αa∂if)

= (z1, z2, z3, z4, w
2
1, w

2p−1
2 ),

J
(4)
1 (D) = (f) + I

(4)
1 (D)

= (z1, z2, z3, z4, w
2
1, w

2p−1
2 ).

So we obtain their corresponding Hodge moduli algebras

M
(2)
1 (D) = C{z1, z2, w1, w2}/I(2)1 (D) = C{w1, w2}/(w2

1, w1w
j1
2 , wi1

2 ),

M
(4)
2 (D) = C{z1, z2, z3, z4, w1, w2}/I(4)1 (D) = C{w1, w2}/(w2

1, w
2p−1
2 ),

which are not isomorphic obviously, since one can verify

dimCM
(2)
1 (D) = i1 + j1 < 2(2p− 1) = dimCM

(4)
1 (D).
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Thus these examples imply that Hodge moduli algebras and Hodge moduli numbers (or Hodge
moduli sequence) are better invariants than characteristic polynomial (a topological invariant
of the singularity) for non-degenerate quasi-homogeneous singularities.

It is interesting that whether Hodge ideals and Hodge moduli algebras of singularities remain
constant or isomorphic under some deformations, like quasi-homogeneous deformation or semi-
quasihomogeneous (or µ-constant deformation more generally). Unfortunately, it is false since
even in the case of quasi-homogeneous deformations we can find some counterexamples:

Example 6.3. For quasi-homogeneous polynomial f = x2 + y4 of weight wt(f) = (12 ,
1
4 ; 1), let

divisor Dα
1 = {f = 0}, where α = 1. Then its 1st Hodge ideal and Hodge moduli algebra are

J1(D1) = (x2, xy, y4)

M1(D1) = C{x, y}/(x2, xy, y4).

And for quasi-homogeneous polynomial g = x2 + y4 + xy2 of weight wt(g) = (12 ,
1
4 ; 1), which is

a quasi-homogeneous deformation of f. Let divisor Dα
2 = {g = 0}, where α = 1. Then its 1st

Hodge ideal and Hodge moduli algebra are

J1(D2) = (x2, xy2, 2xy + y3, y4)

M1(D2) = C{x, y}/(x2, xy2, 2xy + y3, y4).

Although as C-vector spaces the C-basis of M1(D1) and M1(D2) are the same, both are

1, x, y, y2, y3.

But as C-algebras, the structures of M1(D1) and M1(D2) are different, since in M1(D1), xy = 0,

but in M1(D2), xy = −1
2y

3 6= 0. However, the Hodge moduli numbers of D1 and D2 are the
same.

So we raise a conjecture from the above example.

Conjecture 6.4. Suppose Fi is one of the three types1 of quasi-homogeneous polynomial in
C2, 1 ≤ i ≤ 3. Let Hi,t = Fi + tGi be a semi-quasihomogeneous deformation of Fi, t ∈ C,
1 ≤ i ≤ 3. Then the kth Hodge moduli algebras of the divisors Dα

H = {Hi,t = 0} for α = 1, and
Dα

F = {Fi = 0} for α = 1, have the same basis over C, ∀k ≥ 0. Hence, their dimensions, i.e.,
their kth Hodge moduli numbers are the same,

mk(D
α
H) = mk(D

α
F ), ∀k ≥ 0, ∀1 ≤ i ≤ 3, ∀t ∈ C.

And we can also ask whether the inequalities in our main theorem B can be extended to
more general singularities. Suppose Fi is one of the three types of quasi-homogeneous curve
singularities, 1 ≤ i ≤ 3. Consider a µ-constant deformation Hi,t = Fi + tGi of Fi, t ∈ C.
If we furthermore assume Hi,t is blackuced, i.e., all distinct irblackucible factors of Hi,t have
multiplicity 1, we have

µ(Hi,t) = µ(Fi),

r(Hi,t) ≤ r(Fi).

By lemma 2.7, we have
δ(Hi,t) ≤ δ(Fi),

where µ, δ and r are the same notations as in lemma 2.7. So we have a corollary:

1see pages 2-3 in introduction
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Corollary 6.5. Suppose the above Conjecture 6.4 is true. For a semi-quasihomogeneous defor-
mation Hi,t, t ∈ C, of Fi, we have the following inequalities

δ(Di,t)−m0(Di,t) ≤ mt(Di,t),

for any t ∈ C s.t. Hi,t is a blackuced polynomial, 1 ≤ i ≤ 3, where Di,t = {Hi,t = 0} is the
corresponding singularity, δ(Di,t) is the δ-invariant of Di,t, m0(Di,t) is the 0th Hodge moduli
number of Di,t, and mt(Di,t) is the multiplicity of Di,t.

Proof. In fact, one can verify the multiplicity of Fi is not decreasing under the above semi-
quasihomogeneous deformation ∀1 ≤ i ≤ 3, i.e.,

mt(Di,t) ≥ mt(Di,0)

for any t ∈ C s.t. Hi,t is a blackuced polynomial, 1 ≤ i ≤ 3. And by Conjecture 6.4, we have

m0(Di,t) = m0(Di,0)

for any t ∈ C s.t. Hi,t is a blackuced polynomial, 1 ≤ i ≤ 3. Finally, by the discussion after
Conjecture 6.4, we have

δ(Di,t) ≤ δ(Di,0)

for any t ∈ C s.t. Hi,t is a blackuced polynomial, 1 ≤ i ≤ 3. So we have

δ(Di,t)−m0(Di,t) ≤ δ(Di,0)−m0(Di,0) ≤ mt(Di,0) ≤ mt(Di,t),

for any t ∈ C s.t. Hi,t is a blackuced polynomial, 1 ≤ i ≤ 3. □
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