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ABSTRACT. The well-known Nakai Conjecture concerns a very natural question: For an alge-
braic variety, how does the differential operators of its coordinate ring imply the smoothness of
it? It has been shown that all higher derivations of a smooth complex variety can be generated
by the first order derivations, and Nakai proposed the converse question: if the algebra of differ-
ential operators is generated by the first order derivations, is the variety smooth? In this paper,
we verify the Nakai Conjecture for weighted homogeneous fewnomial isolated singularities and
hypersurface cusp singularities, this extends the existing works.
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1. INTRODUCTION

In this paper we always assume that k is a field of characteristic zero. Let A be a finitely
generated k-algebra. Let DiﬁZ(A) be the set of all g-th order differential operators on A over
k, Der}(A) be the set of all g-th order derivations on A over k. It is known that Difff (A) =
Der{(A) ® A, and there exist two natural filtrations A = Diff{(A) C Diff;(A) C Diff{(A) C ---,
0 = Der(A) C Der}(A) C Der?(A) C ---. Moreover, the compositions of differential operators
and derivations satisfy Diff?(A) Diff?(A) c Diff?*(A), Der? (A)Der{(A) C Derl™¥(A), the Lie
brackets(commutators) of differential operators and derivations satisfy [Diff}(A), Diff{(A4)] C
Diff? ™71 (A), [Dert (A), Deri(A)] € Dert ™ (A) ([12]).

Let Dery(A) = qu Der(A), Diff,(A) = qu Diff{(A), and denote by der}(A) the A-submodule

of Der{(A) which consists of A-linear combinations of derivations of the form 8§18y ---46;,1 <

j < q,0; € Der}(A),Vi, and denote by dery(A) the A-submodule of Dery(A) generated by the

compositions of elements in Derj(A). It is clear that dery(A) = Y, derl(A), but derl(A) =
qe

dery(A) N Der{(A) does not necessarily hold. For simplicity, we omit the subscript & from now
on.

Grothendieck [8] showed that Der(A) is generated by Der!(A) when A is regular. Nakai
conjectured that the converse is also true, it seems that he had not quoted the conjecture
rigorously in [12], but his conjecture is often quoted in connection with his paper [12]. Since
der(A) = Der(A) may not be the same as der?(A) = Der?(A), Vq in general, his conjecture had
different statements in previous works (see [4],[11],[17]). In this paper we deal with the following
version:

Conjecture 1.1 (Nakai [4] [12]). Let k be a field of characteristic zero and A be a finitely
generated k-algebra, if der1(A) = Deri(A) for each integer ¢ > 1, then A is regular.
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It has been proved by Becker [I] and Rego [13] that the Nakai Conjecture implies the well-
known long-standing Zariski-Lipman conjecture, which asserts that if Der!(A) is A-projective,
then A is regular.

The Nakai Conjecture has been proved for several cases and is still open in general cases.
It is known to be true for algebraic curves [II], the case of monomial ideals [I5], the case of
hypersurface with two variables [16], the case where A is the invariant subring of k[zq, -, 2]
by a finite subgroup of GL(n,k) [20], the case of a cone on a Riemann surface of genus > 1
and other special cases ([3], [4], [I7]). Moreover, Singh [16] conjectured that when A is the
coordinate ring of a hypersurface, if Der?(A) = der?(A) where A is the coordinate ring, then A
is regular. This is the Singh Conjecture and it is obvious that the Singh Conjecture implies the
Nakai Conjecture for hypersurface case.

For homogeneous hypersurface case, Der(A) has been considered more concretely. Bernstein,
Gel'fand, and Gel'fand [2] analyzed A = k[z,y, 2]/(® + 3 + 23), which is the coordinate ring of
the cubic cone, showing that Der(A) is not generated by any bounded order derivations. When
A = klx,y,z]/(f), where (V(f),0) is a homogeneous isolated hypersurface singularity, Vigué
[18] showed that Der(A) is not generated by any bounded order derivations when deg(f) > 3.
Moreover, in [7], the authors studied the explicit generators of Der?(A) and Der3(A), which
imply the Nakai Conjecture. However, their methods are very hard to be generalized to high
dimensional homogeneous isolated hypersurface singularities.

For isolated singularities, there are few existing research results. In [5], the authors proved
Nakai conjecture for homogeneous Brieskorn isolated hypersurface singularity, Xiao-Yau-Zuo
[19] verified Nakai conjecture for weighted homogeneous Brieskorn case. Recently, Yau-Zhu-Zuo
[22] proved the Nakai Conjecture for the homogeneous isolated hypersurface singularities. They
introduced new ideas to analyse the necessary condition for D € Der?(A) to be generated by
Der'(A) and completed the proof by construction.

In this paper, we use an exact sequence (see theorem 2.8) [I6]) as the main idea, to transfer the
construction of an element in Der?(A) to an n-tuple of elements in Der!(A), and prove the Nakai
Conjecture for the cases of weighted homogeneous hypersurface singularities and hypersurface
cusp singularities.

More precisely, in section (3| we generalize part of the results obtained in [22] to weighted
homogeneous hypersurface singularity cases (see theorem theorem and remark , and
then follow the remark [3.5]to construct an n-tuple of first order derivations which cannot be the
image of any D € der?(A) under the map in theorem The theorem is stated as following:

Theorem A. Let A = P/I where P = klx1,--- ,z,], I = (f) with (V(f),0) a fewnomial
weighted homogeneous isolated hypersurface singularity, then der?(A) # Der?(A). The Nakai
Conjecture holds for fewnomial weighted homogeneous isolated hypersurface singularities.

In section |4, we move to the cases of some singularities which are not weighted homogeneous.
We verify the Nakai Conjecture is true for hypersurface cusp singularities (7}, singularities).
The idea of proof is similar to the proof in section [3] by searching the necessary conditions for
elements in der?(A) and doing concrete constructions.

Theorem B. Let A = Clx,y,z|/(f) be the coordinate ring of the hypersurface cusp singularity
({f =a2P+y?+ 2" +xyz = 0},0), where ]lg—i— % +1 <1, then der?(A) # Der®(A). In particular,
the Nakai Congjecture holds.
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2. PRELIMINARIES

In the following two subsections we recall some basic definitions and theorems of higher order
differential operators and derivations. Readers can refer to [12] and [16].

2.1. Higher order differential operators and derivations.

Let k, A be commutative rings with unit elements and let A be a k-algebra. Let F' be an A-
module. A ¢-th order differential operator A of A/k into F is, by definition, a k-homomorphism
of A into F satisfying the following identity:

q+1
A(woxl,...,wq):Z(—l)sil Z xllmzsA(xo.f“(i-zsxq)
s=1 11 < <ig

for any tuple (xo,z1,---,24) of (¢ + 1)-elements in A. Denote by Diff?(A, F') the set of ¢-th
order differential operators of A into F, and Der?(A,F) = {A € Dift?(A, F)|A(1) = 0} the
set of ¢-th order derivations of A into F. When F' = A, we will simply denote Diff?(A, F') by
Diff?(A) and denote Der?(A, F') by Deri(A).

Let N be the set of all non-negative integers and put V= N". For a = (aq, -+ ,ap) € V,

«@ Qn

we use the standard notation: |a| = a1 + -+ + ag, al = ail---a,!, 2% = 27" - 24", ete.
Forr € Zlet V, = {a € V]| |of <r}and W, = {a € V| |a| = r}. For 1 < i < n, let
ei =(0,---,1,---,0) € Wp with 1 at the i-th place.

Let P = k[z1, -+ ,zy). For a € V let d, denote the derivation (1/a!)0%/0x® : P — P. The
first order derivations of P is well-known as Der!(P) = P(0,,,- -+ ,0,,), meanwhile higher order
derivations are generated by first order ones, i.e., 8, € Diff ™ (P). When A = P/I with I proper
ideal of P, the higher derivations are presented as follows:

Theorem 2.1. Let P = k[z1,22,- - ,xy], I be a proper ideal of P and A = P/I. Then

Dern(a) = PELED B ED = (b € permp.a)i(1) = 0k

. 1D e Diff"(P),D(I) € I}
- I Diff™(P)

Diff™(A) ~ (D e Diff™(P, A)|D(I) = 0}.

By Theorem we will identify derivations(differential operators) in Der(A)(Diff(A)) with
their lifts in Der(P)(Diff(P)) or in Der(P, A)(Diff (P, A)) throughout the later discussion. Then
every D € Diff(A) has a unique expression of the form in Diff (P, A):

D= Z ca(D)0,

acV
with ¢, (D) € A for all @« and D(I) € I, and ¢, (D) = 0 for almost all a.

Definition 2.2. For D € Diff(P) and § € V, define
<D, $ﬁ> = Z Coz-l—ﬁ(D)aa-

acgV
Note that if D € Diff"(P) then (D, 2%) € Djﬂ“"*\ﬁl(p).
Lemma 2.3. Let D € Der!(P) and D' € Diff"(P). Then for every a € W,,1 we have

¢a(DD') =" a;D(x)ca—e, (D).
=1
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2.2. Descent of Higher Order Derivations.

Definition 2.4. [16] Let @ : Diff (P, A) x V' — Der(P, A) be the pairing defined by ®(D, ) =
(D, 2Py — ((D,z") (1))R = (D,2%) — c3(D)dy. Note that @ is the direct limit of the pairings

B, : DIff™ (P, A) x W, — Der™ " (P, A)
given by
o r(D, B) = (D, ") = (D).
Proposition 2.5. [16] For r < m, we have an exact sequence
0 = Diff" (P, A) — Diff™(P, 4) 2% @) Der™ (P, A),
BEW,

where Om (D) = (P (D, B)) 4 and Diff" (P, A) — Dift" (P, A) is the natural inclusion.

ceWy’

Corollary 2.6. [16] For D € Diff™(P, A) the following three conditions are equivalent:
(i) D € Diff""(A).

(i) (D,zP) € Diff™~8l(A) for every B e V.

(iii) (D,2") € Diff ™~ 1l(A) for every B € Vi_1.

In view of the above corollary, the pairings ®,, , induce pairings
©m,r - Diff(A) x W, — Der™ ™" (A).
It follows from Proposition that for » < m, we have an exact sequence

0 — Diff" (4) — Diff"(4) 5 @) Der™"(A),
BEW,

where O, (D) = (¢mr(D, B))gew,, and Diff" (A) < Diff"*(A) is the natural inclusion.
Definition 2.7. For m € Z define

7™A) ={(ds)gen, , € €D Der'(A) | dg(x;) =d,(x;) whenever
ﬁEWm—l

B+e=v+e;B,7v€Wn_1,1Z14,j < n}.

If D € Diff™(A) and 0, m—1(D) = (dg) , then dg (x;) = cgte, (D). It follows that

BEWm -1
Im (0rm—1) C 2™(A).
We write 0,, = 0p, m—1 for simplicity.
It is easy to see that 22(A) := {(dy, - ,dy,) € &% Der'(A)|d;(x;) = d;(x;) for all i, j}.
Theorem 2.8. Suppose A = P/I and I is principal. Then the sequence
0 — Der!(A) — Der?(4) -2 2%(A) = 0

1S exact.

Proof. See Theorem 2.13 in [16]. O
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2.3. Weighted homogeneous fewnomial isolated singularities.
In this subsection, we recall definitions related to weighted homogeneous fewnomial isolated

singularities.

Definition 2.9. A polynomial f = > _y» aa®® € k[z1,22, -+, 2,] is called weighted homo-
geneous of weight type (wi,wa, -+ ,wy;d), if wia; + waas + -+ + wypay, = d holds for each
multi-index o = (a1, ,ay) with a, # 0. We call w; the weight of z; and d the weighted

degree of f, denoted by wt(z;) = w; and wt(f) = d.

Definition 2.10. [9] We say that a polynomial f € k[x1,x9,- - ,x,] is fewnomial if the number
of monomials appearing in f does not exceed n.

Obviously, the number of monomials in f may depend on the system of coordinates. In order
to obtain a rigorous concept we shall only allow linear changes of coordinates and say that f
(or rather its germ at the origin) is a m-nomial if m is the smallest natural number such that
f becomes a m-nomial after (possibly) a linear change of coordinates. An isolated hypersurface
singularity V is called m-nomial if there exists an isolated hypersurface singularity Y analytically
isomorphic to V' which can be defined by a m-nomial and m is the smallest such number. It
was shown that a singularity defined by a fewnomial f can be isolated only if f is a n-nomial in
n variables when its multiplicity at least 3 [6].

Definition 2.11. We say that an isolated hypersurface singularity (V,0) is fewnomial if it
can be defined by a fewnomial polynomial f. (V,0) is called weighted homogeneous fewnomial
isolated singularity if it can be defined by a weighted homogeneous fewnomial f. 2-nomial (resp.
3-nomial) isolated hypersurface singularity is also called binomial (resp. trinomial) singularity.

The following proposition tells us that each simple singularity belongs to one of the following
three types of series.

Proposition 2.12. [21] Let (V(f),0) be a weighted homogeneous fewnomial isolated hyper-
surface singularity with multiplicity at least 3. Then f is analytically equivalent to a linear
combination of the following three series:

Type A. 2t + 25 + -+ 20" + 28 n > 1,

Type B. a{'zo + 5223 + -+ + 20" @y + 200 0 > 2,

an—1

Type C. x{'xo + x52w3 + -+ + " Tp + 21,0 > 2.

3. THE WEIGHTED HOMOGENEOUS FEWNOMIAL ISOLATED SINGULARITY CASE

From now on we consider the case of P = k[z1,x2, - ,x,], I = (f)C P, where f is a weighted
homogeneous polynomial of weight type (w1, -+ ,wy;1) and A = P/I. Denote by f; the partial
derivative %, and J(f) = (f1, fo, -+, fn) the Jacobian ideal of f throughout later discussion.

Proposition 3.1. Der'(A) is generated by the Euler derivation E =Y 1", w;x;0, and Hamil-
tonian derivations Dij = fiOy; — fjOz,.

For the proposition 3.1} one can refer to [5] for a simple proof, the key point is that fi, fo, -+, fn
form a regular sequence in P.

Theorem 3.2. Let D € Der?(A) and 03(D) = (dv,--- ,dy). If D is in der?(A), then
dl(xl) € (fla' t 7fi—1axi7fi+17"' 7fn)2-
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Proof. By Proposition we know Der!(A) is generated by E and D;;’s where 1 <1 < j < n.
Therefore the generators of Der!(A)Der!(A) as an A-module are the followings: D;;Dy, D;; E,
ED;; and E2. As [Der'(A), Derl(A)] C Dert(A), 62(D1Ds) = 05(DaDy) for D1, Dy € Der!(A).

Therefore, we only need to consider the image of the generators E?, ED;j, D;jDj; under 0.
Without loss of generality, we can only consider di(z1). For D = D;; Dy, if 4,5, k,1 # 1, then
d1 = 0. Therefore, we only need to consider the following cases:

If D=1E?
dy = w1 E, di(z1) = w%m%
If D= Dy;E,
di = —f;E +wiz1Dyj, di(z1) = —2wi21 fj.

If D= DFE, i,j#1,

di = wiz1D;j, di(x1) = 0.
If D= Dy;Dy,

di = —fjDu — fiD1j, di(x1) = 2f; fi.

If D = Dy;Dy, k,l# 1.

dy = —fjDy, di(z1) = 0.
Immediately we get di(z1) € (z1, f2,--- , fn)?. |
Corollary 3.3. For D € Der?(A) with 05(D) = (d1,--- ,dy), if

dz(xl) ¢ (f17 T 7fi—17xi7 fi-i-l) T 7fn)2
for some i, then D does not belong to der?(A) and the Nakai Conjecture holds for the ring A.

Theorem 3.4. ([22]) Fordy, - ,d, € Der'(A), if di(x;)—d;(x;) € J(f) Vi, j, then 3 (dy,--- ,d},) €
P?(A), such that d; — d; is an A-linear combination of Dy’s, (k,l =1,--- ,n) for each i.

Proof. The idea of proof is to adjust d; by adding or deleting Dy;. The n = 2 case is easy to
adjust. However when n grows larger, the latter adjustment may break the equality constructed
by former adjustments. We begin with n = 2.
Step 1: n = 2.
In the case of n = 2, the diagram of (d;,d2) can be presented as follows:
di =d; (x1)81 -+ dl(xg)ag,
do = dg(l‘l)al + dg(ﬂ?g)ag.
Now assume dj(x2) — d2(x1) = a1 f1 + azfe. By adding —a;1 D12 to di and —agsDi2 to do, we
obtain
dy = dy — a1Dya = (di(x1) + a1 f2)O1 + (di(x2) — a1 f1)0e,
5 = dy — agD1z = (da(x1) + azf2)01 + (da(x2) — azf1)0s.
Therefore d}(x2) = db(z1).
Step 2: n = 3.
Now we consider n = 3, the diagram of d; becomes:
dy = di(21)01 + d1(x2)02 + d1(x3)03,
do = dg(l‘l)al + dz(ajg)az + dz(ﬂfg)ag,
d3 = d3(21)01 + d3(22)02 + d3(23)0s.
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We can first assume that
di(wa) — da(x1) = azfs,

because the part of the difference with respect to fi and fs can be diminished by the operation
in case of n = 2.
Now adding azDs3 to di we get:

dy = di(21)01 + (di(x2) — asf3)02 + (di(x3) + a3 f2)0s,

dy = da(21)01 + da(22)02 + dao(23)0s,

dy = d3(x1)01 + d3(2)0a + d3(23)03.
Note that dj(z2) = dy(1) and di(z;) — dj(x;) € J(f). Therefore, in later discussion we can

assume dj(z2) = da(x1), meanwhile we abuse the notation of d and d;.
Now the diagram of d; becomes:

di = (x)01 + (%)02 + di(23)03,
dy = (%)01 + (%)0a + da(23)0s,
ds = ds(x1)01 + d3(x2)02 + (%)0s.
We aim to adjust dj(z3) and ds(x1). By adding D3 to d and ds as in Step 1 we can assume

di(w3) — d3(z1) € (f2).
Assume that dj(x3) — d3(x1) = asfo. By adding —as D12 to d3 we get
dy = (d3(x1) + azf2)01 + (d3(x2) — a2 f1)d2 + (%)0s.

In this case dj(x1) = di(x3) and ds(x2) — da(x3) € J(f). So without loss of generality we can
assume dz(x1) = dj(x3).
We are left with the difference between da(x3) and ds(z2):

di = (¥)01 + ()02 + (%)03,
dz = (x)01 + ()02 + da(23)0s,
= (%)01 + d3(w2)02 + (*)0s.

Similarly we can assume dg(z2) — d2 (azg) = a1 f1. However we should take care not to influence
the equality of dj(z2) = da(z1) and dj(x3) = d3(x1). The adjustment is as follows:

By = () () + a5+ ((+) — a1 o),
dy = ((*) + %alf:%)al + (%)02 + (da(x3) — %alfl)a&

dy = ((*) — %alfQ)al + (d3(z2) + %a1f1)82 + (%)0s.

Note this adjustment makes d;(x;) = d}(z;) hold for all 4, j.

Step 4: n =4.

Now we consider n = 4, which will be helpful for general n. The diagram of d; is as follows:
( )81 + dl(:rg)az + dl(l’g)ag + d1($4)a4,
da(x1)01 + (%)02 + do(x3)03 + da(x4)04,
d3(z1)01 + d3(x2)02 + (%)03 + ds(x4)0s,
d4(x1)81 + d4(.1‘ )82 + d4( )(93 + (*)64
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By operation in the case n = 2 we can assume

dy(z2) — da(z1) € (f3, fa).

By operation in the case n = 3 we can assume dj(z2) = do(x1) by adding Das, Doy to dj.
Similarly, for d;(x;) — d;(x;) containing f; with { > or [ > j, we can always add D;; or Dj; to
d; or d; to diminish the f; part. Therefore, the diagram exchanges to

= ()01 + ()02 + ()03 + (%)0s,

= (%)01 + (%)02 + da(x3)03 + da(x4)04,
= (%)01 + d3(x2)02 + (x)03 + d3(x4)04,
= (%)01 + dy(22)02 + ds(23)03 + (*)04,

with
da(z3) — d3(z2) € (f1), da(xa) — da(z2) € (f1), d3(w4) — da(x3) € (f1, f2)-

Following the last adjustment in Step 3, we can diminish the difference between da(z3) — d3(x2),
da(z4) — dg(x2) and dz(x4) — dys(z3). To avoid occupying too much, we illustrate the adjustment
for d3(.734) — d4(.734) =2f1 4+ 2fo:

= (%)01 + ()02 + (%) + f1)03 + ((*) — f3)04,
= (%)01 + (x)02 + ((*) + f1)03 + ((*) — f3)0u,

= ((*) + f4)01 + ((*) + f1)02 + ()03 + (d3(24) — f1 — f2)0u,
= ((*) = f3)01 + ((*) — f3)02 + (da(x3) + f1 + f2)05 + (%) 0.

Notice f; and fy are independent in this adjustment, that is to say, we can first diminish the
difference in (f1) then (f2). Therefore it provides the proof for general n case.

Step 5: General n.

For d;(x;) — dj(x;) € J(f), by Step 2 we can assume

di(w;) — dj(xi) € (f1, 5 fimt, fivts oo fim1s fints oo 5 fu)-
Step 3 and 4 tell us that each part in the difference with respect to fi is independent and
can be diminished without changing other equalities. Therefore we just need to do adjustment

repeatedly as the last one in Step 4, and we will obtain equality of all d;(z;) and d;(x;) in the
end. (I

Remark 3.5. We can transfer the Nakai Conjecture to the construction of the tuple (dy,--- ,d,) €
®"(Derl(A)), satisfying d;(z;) — d;(x;) € J(f),V1 < i < j < n, and moreover d;(z;) is not in
(fl, cee ,fi,1,$12, fi+1, s ,fn) for some 1.

As if we find such a tuple (di,da,- - ,dy), by theorem [3 n and theorem [2 . there exists D €
Der?(A), 05(D) = (dy, dy, - -+ ,d)), such that for each 1 < i < n, d; — d} is A-linear combination

of Dyi’s, then d;(z;) —di(z;) € (f1,-++, fi—1, fit1,-+  fn). If D € der?(A), theorem 3.2]tells that

di(xi) € (fi,--, ficts @iy fixa, - fo)?, then di(xi) € (f1,--, fic1, 27, fisr, -+, fu) for each i,
which leads to a contradiction with the hypothesis for (dy,ds, - ,d,).

Definition 3.6. For Hess(f) = (%aj;j)m:h..,n = (fij)ij=1,- n the Hessian matrix of f,
let M;; be the complementary minor of f;; and H;; be the algebraic co-factor of f;;. Let
i1 iy e i

. . . and
Ju o J2 o Jk

M, j1isjsirj, D€ the complementary minor of the submatrix Hess(f)
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H;\ jiigjs-inje be the algebraic co-factor of Hess(f) [ ;11 ;22 ;’Z More precisely, let
o1 = (i1,-++ ,in), 02 = (j1,---,Jn) be permutations of (1,2,---,n), then H; jiivjp-irj =
(sgn(o1)sgn(oz)) - det <Hess(f) [ j,kH i.n }) It is easy to see that this expresion is
independent of the choice of ordersk—;’ (Tg+1, J" yin) and (Jr41, - ,Jn), in particular, when
i <iy < <ipand ji < jo < -+ < g then Hy jiinjyinis = (—1) 2000300 50w And
H;\ jrigjainje 15 anti-symmetric for {i1,--- ,i;} and {j1, -, ji}, for example, Hig24 = —H1422.

Theorem 3.7. With notations as above, for any i,j,k, one holds the following identity

wiTi Hj, — wyrp Hj = Z(l —wy) fiH ;.-
1]

Proof. Notice that both sides are anti-symmetric for ¢ and k£, we may assume ¢ < k in the
following proof.

As f is weighted homogeneous of weight type (w1, -+ ,wp; 1), fi is also weighted homogeneous
of weight type (w1, wa, -+ ,wp; 1 —wy), then (1 —wy)fi =Y 0 wsxs fis, and

n n
RHS = Z(Z ws$sfls)ijli = Z wsl's(z flsijli)-
I#j s=1 s=1 l#7
For s # i, k, we have

7j—1 n
> fsHiwi =Y fis(=Hugi) + Y frsHjni

I#j S

1 1=j+1
j_l . . n . .
=Y frs(=1)TFINL e — Z Frs(=1) RN
=1 I=j+1

_ 12 - j—2 j—1 j+1 j+2 -+ n-1 n
:_1 7,+k‘+]+1dt H
(=1) ct\Hess(H) | o 1 0 51 G941 0 k=1 k41 - n

=0.

Similarly fov s =4, > 45 fis Hiuts = Dy Sl = Hyws for s =k, >y frs Hints = ey finHjnii =
- Zl;ﬁj fieHjqar = —Hj;, therefore

n
s=1 I#]

O

Remark 3.8. If we take d; = Hj; - E and d, = Hjj, - E, then d;(xy) = wyarHj; and di(z;) =
wixiij. By Theorem d,(:vk) — dk(azz) € J(f)

To finish proof of Thm[A] we need a theorem by Saito.

Theorem 3.9. Let f € klx1,- -+ ,z,] be a weighted homogeneous polynomial, defining an isolated
singularity (V(f),0) at the origin, then

det(Hess(f)) ¢ J(f).
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Proof. Since f is weighted homogeneous, f € J(f), and the common zero locus of the partial
derivatives fi, fo,--- , fn is a single point at the origin. Consider the germs of fi, fa, -, f, at
the origin, by lemma 3.4 in [14],

f1, -+ s fn)
a1, n)

Therefore, det(Hess(f)) ¢ J(f)Ocn o, and necessarily det(Hess(f)) ¢ J(f) ink[z1,--- ,z,]. O

det( ) & (fi, - fu)Ocn o

Now we begin to prove the main theorem [A]

Proof. (of main theorem
By remark it is enough to construct derivaions dy,- - - ,d,€ Der!(A), such that d;(z;) —
dj(z;) € J(f), and di(x;) & (f1,--- ,fi_l,xlz,fi+1,"' , fn) for some 1.
Consider
di=Hyj E1<i<n

for some fixed j. Since d;(x;) = wiz; - H;j, by Theorem di(zj) —dj(z;) € J(f), we only need
to find z;H;; ¢ (f1,- - ,fi_l,x%,fi+1,~- , fn) for some i,j € {1,--- ,n}.
First, we treat the special cases: f is of Type A,B or C in proposition [2.12]
For Type A, it is obvious x1H11 ¢ (22, fa,- -+, fa)-
For Type B, f = 2{'xo + 25%x3 + -+ + 2" '@, + 2. In this case we have

n—1
_ ar1—1 __al as—1 _ _Gn—1 an—1
f1—01$1 z2, f2—$1 + asx, T3,y Jn =T, 1 t+apx, .
For any g € k[x1,- - ,x,], we denote by g the image of ¢ in k[x1,z2, - ,x,]/(21). Since
ra a az—1 az—1
fo =2l + axxy® w3 = axxy? w3 € klxy, x2, -, xn]/(21),

(f2,-++, fn) is the Jacobian ideal of f = 2§23+ - -+z" ' ¥, +2%", which defines an isolated sin-

gularity in hyperplane {x; = 0}. Therefore by theorem 3.9} H11 = det(Hess(f)) & (fo, -, fn),
which implies
Hi & (21, f2,-  f)

As z1 is regular in k[z1, -, 20]/(f2, - 5 fn), T1H1L & (22, f2, -+ fn).
For Type C, f = a{'zy + 25223 + - + 23" '@y + 22721, Then Hess(f) =

a1—2 a;—1 -1
ay(a; — 1):5111 T arz{t ) 0 X e 0 anxdn
al— as— as—
a1y az(ag — 1)z5? “x3 asTs 0 e 0
0 agmgrl as(as — 1)x§372:1:4 agzzjgrl 0
_ -1 _
apdn=1 0 . 0 17" an(an, — 1)zon

We claim Hy, & (z1, fo, -+, fn)-

Proof of the claim:

Expanding Mj,, on first column, there exist two parts. The first is fo1f32 - fr(n—1) and the
second is (—1)" f1 M11pn-

We have fo1f32- - fum-1) € (1, f2,- -+, fn) for fo1 = a1z$ . We only need to show fr1 M11pn ¢
(1, f2,+ -+, fn). Consider

a aQ, Anp—2 An—1
g =x"T3 + P Ta + -+ 2,5 T + 3, T,
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An—2

then g; = f; for all 3 < i < n—1. And glz,—0y = 5°x3 + 25°24 + - + " wy 1 de-
fines an isolated singulariy in {z; = z, = 0}. Then by theorem det(Hess(gl{z,—0y)) =

det(g(‘qz’;mfl)))\{xn:()} ¢ (92,93 +gn—1) in k[za, 23, -+ ,xn_1]. Necessarily,

(@2, Tn—1

8(f27'” 7fn—1) 8(927 7gn—1)
M = det = det , 03 On—
Hnn (a(x27 7$n—1)) (8(:1:27 ,$n_1)) ¢ (92 93 In 1)
holds in k[z1,--- ,x,]. We also see that
(1‘1, f27 Ty f’n> = (xla a2$g2_11‘3+$?1,gg, 5y 9n—1, xzn—_ll +Gn$ffb_11’1) = (1'1792, g3, y0n—1, xzn—_ll)

Since finMiinn = anm%"_annn is independent of the variable x1 and any term containing

ZTn—1 has degree less than a,_1, quotient by x; and xfl”__ll will lead to

an$zn71M11nn ¢ (x17927g37 Tt 7gn—1axzn__11) - (.'Ifl,fQ, T 7fn)

Now we get Hy, ¢ (1, fo, -+, fn), as x1 is regular in k[xi,- - ,2z,]/(fa, -, fn), ®1H1n ¢
(@3, f2r- - s fu)-

For general case, since f is fewnomial, f is a direct sum of polynomials of Type A,B or C.
We can write

=it
with h; € k[zj,_ 41, - ,xj] of Type AB or C, where jo = 0 and j; = n. We consider hq, by
above arguments, there exists a polynomial @1, a minor of Hess(h;) by removing the s-th row
and the ¢-th column, such that

xSQl ¢ (87331’ yLgy e 787]1)_ (fl?'” 7fs—17xsuf8+17'” )fjl)a
Then from Hess(f) = diag(Hess(f1),---,Hess(fi)), Mg = Q1 - [y hess(h;), and zsHg =
(_1)S+thMSt Q_f (fla e 7fs—17$§7 fs—i-l? e 7fn)7 which finishes our pI‘OOf. O

Remark 3.10. Indeed, the proof for fewnomial case can be applied to general weighted ho-
mogeneous cases, the problem is how to find some H;; ¢ I; := (f1, -+, fi—1,%i, fit1, -+, fn)-
Theorem cannot be used when k[z1,--- ,2,]/(f1, -, fn) is not Artinian. To see this, one
can check for f of Type C, in this case, Hi1 € I3.

Here is another example for Hy; ¢ I.

Example 3.11. Let f = 2% + 3> + 22 + tzy, which defines the Eg simple elliptic singularity.
Then
30zt + 12ta?y  4ta® 0
Hess(f) = Atz 6y O],
0 0 2

as Clz,y, 2]/I1 = Clz,y, 2]/ (x, 3y*+tat, 22) ~ Cly]/(y?), Hi1 = 12y ¢ I. Since C[z,y, 2]/(fy, [2) =
Clz,y, 2]/ (tz* + 3y?,22) ~ Clz,y]/(tz* + 3y?), x is regular in Clz,y, 2]/(fy, f-), and we have
zHyy & (22, fy, f+), the Nakai Conjecture holds for Clz,y, z]/(f).

4. THE HYPERSURFACE CUSP SINGULARITY CASE

Dimension two hypersurface cusp singularities are almost classical (see [10]), and are locally
isomorphic to the so called T}, ,, singularities, where T}, ,, is the isomorphism class of the
hypersurface singularities ({2 + y? + 2" + xyz = 0},0) with % + % + % < 1. In this section, we
will verify the Nakai Conjecture for these types of singularities.
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With notations in section [2[, let Dy = >"7" | 0y, Do = > 1| BiOx,; (v, fi € P) induce two
first order derivations on A, then D1 Dy = Z? =1 (@B 0, Ox; +ai%8xj), and by definition the -
th term of 92(D1D2) is 2azﬂi8m+Z#i(aiﬁj+ajﬁi)&xj, V1<i<n.AsD; (f) = Z?:l a; fi € (f),
by taking the j-th partial derivatives on both sides, we have Y | o fi; € (f, J(f)), V1 < j <n,

where J(f) = (f1,---, fn) is the Jacobi ideal of f. Express it in the matrix form, we have

Hess(f)(al, e 7an)T =0in R= C[xlv e ;xn]/<f7 J(f)): A/(J(f))
Notice that R is not the Tjurina algebra of the singularity (V(f),0), but we will see R is also
Artinian later, then we can translate this equation in R to several linear equations in C.

Now for the hypersurface cusp singularity case (V(f),0), f = 2P + y? + 2" + zyz with % +
%—l—% < 1, then f1 = % = paP~l +yz, fo = % = qy? " + 2z, f = % = 72"t +xy. As
vyr =G+ ety V ' EA+ L+ 2~ f), ayz = 0in R = Cl,y,2]/(f, f1, f2, f3) and
zP =y?= 2" =0in R, so the unique maximal ideal m = (z,y, z) is nilpotent and R is Artinian.
Next we deal with it by dividing to smaller cases.

4.1. Cases of p,q,r > 3.

When p,q,7 > 3, 22y = 2(fz — 72" ') = afs —r2"2(fo — qy?Y) = afs — rz"72fy +
qry? 22" (fr—pat™t) = wfs—r2 2 fobqrytT22" 3 fi —pgrat Pyt Ry as L4 L4 < L,
p+q+r>09, aP 3y 32773 ¢ m. Thus 2%y € 2%y - m, and 2%y € 2%y - m* for any integer k.
Since m is nilpotent in R, 2%y = 0 in R, similarly, 2y?, 2%z, x22,y%2, yz? all equal to 0 in R. So
R has a C-basis {1,z,--- , 2P~ y,--- 997 2, 2"}, dimcR=p+q+r—2.

For the equation Hess(f)(a1, - ,a,)T =0in R, it is written as
p(p — 1)a?~? z y a
z q(q —1)ya2 x az | =0 in R.
Yy x r(r—1)z"2 as

By some calculations, we see that

(o1, 0, a3) € Spanc{(x?,0,0), (z*,0,0)--- (zP~1,0,0), (y91,0,0), (2" 1,0,0), (0,4%,0), (0,4°,0)
—(0,9971,0), (0,271, 0), (0,271, 0), (0,0, 2%), (0,0, 2) - -- (0,0, 2"71), (0,0, 2P 1), (0,0,y77 1)}

=R < (2%,0,0), (zy,0,0), (zz,0,0), (0,4%,0), (0, 2y, 0), (0, yz,0), (0,0, 2%), (0,0, z2), (0,0, yz) > .

Thus a; € m?,V1 < i < 3, together with previous calculations, write 2(D1Ds) = (di, da,ds3),
then d;(z;) = 2D1(x;)D2(z;), and D1 (x;), Da(x;) € m? (mod J(f)) in A, we obtain the following
lemma immediately.

Lemma 4.1. For A = Clx,y, z|/(f), where f = 2P +y9+ 2" +xyz with p,q,r > 3, %—I—%-ﬁ-% <1,
let D € der®(A) and 09(D) = (d1,da, d3), then

di(z),d2(y), ds(z) € m* + J(f) in A,
which is equivalent to say, they belong to m* in R.

Now we begin to prove Nakai’s conjecture for these cases. We need to do some concrete
calculations. In C[z,y, 2], we have

a?yz =wzfs +ayfo — fafs + (fo — 22)(f3 — zy)
=z fs +ayfo — fofs+qry? '
=azfs +ayfs — fofs +qry? 22 2 (fr — paP)
=zzf3+ayfo — fofs + qry® 22 P fi(fL — paP ) — pgrat Ty 22
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=vzfs +ayfo — fofs + qry? 32" P fE — paraP Tty 1732 3 f — paraP Tyt 2,

As zyz = (% + % + % — 1)_1(%f1 + %fz + 2 f3—f), then x(% + é + % — 1)_1(%f1 + %fg +2f3—f)
= xz fatayfo— fofatqry? 32" 3 fi—pqraP =1yt 823 fi—pgrar 2yt S (L4 L L -1) THE fit
%fg +2f3—f). Since aP2qa7 2,73 P 2907372 = 0in R, 2P 2q97 2273 P2y 0732772 € J(f)
in A, and we have

x2 2 1 1 e 1 1 1 1
(—4pgr(+—+—-—Da? Y2 fi+ (1— == Dayfo+ (1— = — )zzfs = 0 (mod J(f)?)
P p q T p T P q

in A. So there exist ai1, a2, a13 € A, such that aq1 f1 + a12fo + ajzas = 0 in A, where

1 1 1 1,22 2 1 1

o = (1- b ;)71(1 T 6)71(; +pq7’(§ + 4 o D)a?~1y1732"7%) (mod J(f)),
a1z = (1= 7= ) Ly (mod J(f))
a3 = (1-— 119 - %)_lxz (mod J(f)).

Similarly, there exist a1, aiog, aog € A, as1, 3o, 33 € A, such that ao1 fi + oo fo+aosfs =0
in A, ag1 fi + asafo + asszfs = 0 in A, satisfying

oo = (1— = = 2y (mod J(f)),
PR N NN DR S ey 2 11 s g1 3
o= (1= = )71 0= 7 parC ot = 0y (mod ()

o = (1= 2 = )7y (mod (1))

az; = (1 - 1 %)*1332 (mod J(f)),

p
am = (1= 2 = )7y (mod J(1)),
1 1 1 1 2 2 1 1
asz = (1 - . ;)_1(1 “u ;)_1(27 +per( + P D)a?=3y1=32"1) (mod J(f)).

From these calculations, we obtain the following proposition immediately.

Proposition 4.2. Let A = Clz,y, z]/(f), where f = xP+y9+42"+xyz with p,q,r > 3, %+é—|—% <
1 defines a hypersurface cusp singularity, then there exists D € Der?(A) does not lie in der?(A).

Proof. With notations as above, we have seen that d; := Z;’Zl aij&rj, 1 < ¢ < 3 are three
derivations in Der!(A). Since for any 1 < i,j < 3, di(z;) — dj(x;) = aij — aji € J(f),
by theorem and theorem E there exists D € Der?(A), (D) = (d},d},d}) such that
di(x) — dy(z) € J(f) in A. And di(z) = i1 ¢ m* + J(f) forces di(x) ¢ m* + J(f). So D does
not lie in der?(A) follows from lemma O
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4.2. Cases of p,q > 4,r = 2.

When p,q > 4,7 = 2, R = Clz,y,2]/(f,J(f)) = Clz,y,2]/(pxP~" + yz,qy?~ ! + zz,22 +
2y, 2y2) = Cl, 3]/ (2292, 2pa7~ — 292, 2qy7" — 2y), and 2y = 22(fs — 22) = 23 — 20(fo —
qyi™h) = 2P fs — 2xfa + 2qyT 2 (fs — 22) = 4 f3 — 2w fo + 2qy1 2 f3 — Aqyt A (fr — paPT!) =
dpqx3y - 2P~y (mod (f, J(f))), as %—i—%—i—% <1,p+q>8, 2P 4y?™* ¢ m. Thus 23y € 23y -m,
and 23y € 23y - m* for any integer k, hence 23y = 0 in R from the nilpotency of m, similarly,
ry3 =0in R. So R has a C-basis {1,z,--- , 2P~ y,--- 397 2y}, dimcR = p +q.

For the equations Hess(f)(a1, a2, a3)’ =0 in R, we calculated that

1 1
(ala a9, a?)) S R < ([BS, 07 0)7 (yq_17 07 0)7 (yq_27 ?x% 0)7 (yq_27 07 _§yq_l)7 (:('27 -1y, 0)7 (xzv 07 _qu_l)u
q

1 1
(07 y37 0)7 (07 xp717 0)7 (%x% xp727 0)7 (07 mp727 _ixp*1)7 (_533/7 3127 0)7 (07 3127 _pmpil) > .

We see that each a; € m?, lemma still holds for this case.

Lemma 4.3. For A= Clz,y, z]/(f), where f = xP + 39 + 22 + zyz with p,q > 4, % + é < %, let
D € der?(A) and 02(D) = (dy1,da, d3), then

dy(z),da(y),d3(z) € m* 4+ J(f) in A.

Similar as the construction of the p,q,r > 3 case, we just need to construct a matrix Q =
(aij)axs in A, such that @ - (f1, f2, f3)T = 0 and a;; — aj; € J(f), and one of the ai1, age, ass
is not in m* + J(f).

In Clz,y, 2, y? 'z = (fi —paP y™2 = y? 2 fr = pa?~ 1yt 2 = yI2 f1 — paP 2y 173(f5 — 22),
PPy = Py by € (1), a2yt = by (S L L) T E i o fa ),
and 2P 3y1~42 € (f, J(f)), so we have

2
T T xz 1 1 1
ey A e \aT”
p q r p q r
11 1 -
=(—+ -+ - —1)(zyfo+x2f3 — fafs +2qy? " 2)
p q r
1 1 1 _ o a9
E(}; + 4 to- D)(2qy? 2 f1 + oy fo + 22 f3) + dqaP 2yt fy + dpaP 3y 173 fy

(mod (f,J(f)*)). (%)

From the symmetry of (z,p) and (y, q), we also have

T 2 z 1 1 1 _ 4 g 3 4

?yfl + %fQ + y7f3 = (]; + . to- 1)(2pzP 2 fo + wy fr + yzf3) + dpa? Y172 fo + dqaP Py 10 fy
(mod (f,J(f)*)) (+),

(1) If p4q > 10, 2P~3y973 € (f, J(f)), we can choose a11, a12,a13 € A and asy, ags, s € A,
such that

2
o = (1= 5= 7= 5 = DTN <20+ 1y~ dga? ) (mod J(1)),
ap = (1— ]13 — (11)1379 (mod J(f)),
a3 = (1-— ]19 — %)sz (mod J(f));
am:a;p*womdﬂnx
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2
an = (1= 2= 70— = 7 =2 = a7~ dpa? ) (mod J(1)),
ans = (1— 2 = 1y=10 (mod J(£)).

For agy, e and ags, we use the following identity in Clz,y, 2],

wyz? = yzfa +ax2fi — fifa + pgaPly? !

=yzfo+xzfi — fife + peaP 2yt (fs —r2" )

=yzfo+x2fi — fifo + P Pyt f3(fz — vz ) — pgraP 2yt !

s g 5 a3 11
= yzfo+azfi — pgra? Tyt s — para Tyt 2( fi+ f2+ f3)( PR

(mod (f,J(f)?)),

asr = 2,p,q > 4,p+q > 8, P 2yi 3272 = pP~2y973 = 0 in R, similarly 2P 3y9722"2 =
2P73y172 = 0 in R and 2P 3y 3,71 = —%a:p*2yq*2 =01in R, so

SCh+ LRt G+ 4 - =) S ysh+ s (mod (£.(F))

We can choose az; = (1 — % — H)7laz (mod J(f)), aze = (1 — 1 — HY7lzy (mod J(f)), and

q
azz = 0 (mod J(f)). We see that an = (1—2 - 1711 -1 - g)—l(%f —29(5 + ¢+ 5 —
1)y?=2) (mod (m*, J(f))), so an & (m*, J(f)).

(2) If p+ g < 10, we may assume p = 5,¢ = 4. Multiplying x on both sides of (x), and notice
that 222, 2P~2y973 = 23y € (f, J(f)), we have

3

(5 4 Zay? 160 o+ ufs = 0 (mod (7, ().

Multiplying = on both sides of ('), and notice that zyz € (f, J(f)), 2P~ 2y?3 = 23y € (f, J(f)),
w3y 12 = a%y? € (£, J(f)), we have

TR+ e =0 (mod (£, (7))

Now there exists Q = (a;) in A, Q - (f1, f2, f3)¥ = 0, and satisfies a1 = 30( + acy —
162) (mod J(f)), a1z = 22y (mod J(f)), a1 = xy (mod J(f)), age = gxy (mod J(f)) and
aij =0 (mod J(f)) if i =3 or j = 3. We see that a1y ¢ (m*, J(f)).

From this concrete constructions, we get the following property.

Proposition 4.4. Let A = C[x,y, 2]/(f), where f = 2P +y? + 2% + xyz with p,q > 4, % + % < %
defines a hypersurface cusp singularity, then there exists D € Der?(A) does not lie in der?(A).

Proof. With notations and calculations as above, there exists a matrix Q = (a;j)3x3 in A, satis-
fying Q - (f1, f2, f3)7 =0, QT = Q (mod J(f)), and ay1 ¢ (m*, J(f)). Then d; := Z?:l @O0z,
1 < < 3 are three derivations in Der!(A), and d;(z;)—d (acz) = a;j—oy; € J(f). By theorem
and theorem there exists D € Der?(A), 02(D) = (d},d), dy) such that dy(x) — d}(x) € J(f)
in A. And di(z) = ag1 ¢ m* + J(f) forces dj(x) ¢ m*+ J(f). So D does not lie in der?(A)
follows from lemma [4.3] 0
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4.3. Cases of p>7,q=3,r = 2.

When p > 6,q = 3,7 =2, R = C[z,y, 2]/(f, J(f)) = Clz,y, 2]/ (pxP~ +yz, 3y* +x2, 22 +ay) =
Cla,y]/(z?y?, 2pxP~! — xy?, 6y% — 22y), then 23y = 6y%z = 12pzP~! in R, R has a C-basis
{1,2,--- 2P~y y? 2y}, dimcR = p + 3.

For the equation Hess(f) - (a1, 2, a3)” =0 in R, we calculated that
(a1,02,03) € R < (2%,0,0), (%, =12pa”~%,0), (2%, =697, 0), (2*,0, —6pa? ™), (2, 22y, —99°),

1 3 1
(y27 O? 0)7 (y7 3 TY, _7y2)7 (‘Tyv _y27 0)7 (37,% _2pxp727 0)7 (‘Tyv 07 _pxpil)v (07 :LA? —51'5) >

3 2

We see that each ag, a3 € m?, oy € (22,y), lemma can be adjusted as following.

Lemma 4.5. Let A = Clz,y, z]/(f) where f = 2P +y*> + 22, p > 7, D € der?(A), and 65(D) =
(dl)d27d3), then

di(z) € (a%y,2") + J(f), and da(y),d3(z) € m* + J(f).

We begin to do some concrete calculations, in C[z,y, 2], x2(%f1 +4fo+5f3— f)(% +3+3—
D)7 =23yz = 2?2 fs + 2y fo — afofs + 6xyPz = 2?2 f3 + 2Py fo — xfofs + 6y(Sfi+5fa+5fs—
f)(% + % + % —1)71, then we have

3
TS (G = aufa+ 6p( — g)a? ™y =0 (mod (£.(£)%)
As zy(5fi + Sfo+5f3— f)(]lJ + 345 -1 =2 = x(ayfi + yzfs — fifs + 2paP~lz) =
2y fitayz fs—a fi fs42paPz = 2%y frrwyz fs—a fi f3+2paP " (f2=3y?) = 2Py frtayzfs—x fifs+
2paP ! fo — 6paP?y(f3 — 22) = 2Py fi + wyzfz — wfifs + 2paP ! fo — GpaP TPy fz + 12paPPyz =
2y fi+ayzfs—xfifs+2paP " fo = paP 2y fs + 12paP (2 fi+ S fo+ 5 f3 - NG+ 5+ 517
and moreover 2P 3y € (f, J(f)), we have

Multiplying  on both sides leading to

2P~ fy =0 (mod (f,J(f)?)).

P2 fy = aP72(3y? + 2x) = 32P3y(fs — 22) + 2P~z = —62P Syz + xpflw = —6:cp*4(%f1 +
_ 1
Ufo+5f3) (5 — §) 7+ 25— fs — ¥ (mod (£, T(f)?)).
(DIf p > 8, aP~4y, 2P~42 € (f, J(f)), so we have

P~ 1
2

1 1 _
(]; - 6)(~’Ep 2f2 -

(= g)oh = 0= a3 o) (mod (1),

f3) = —Qiﬁp_gﬁ —
p

Using the standard C-basis of R, the above equations can be written as

e a-B  G-pe)
1
(o=~ mpew) = §)ar* — go® (5= gp)a! _ :
. =0 (mod (f,J .
y? — 12272 (p — 2)ap1 5 fa (mod (f,J(f)%))

Pl 0 0
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1
Lt 1 0 0
Multiplying the matrix 0 0 —1—12(% -3 0 on both sides, and
11
0 0 0 ~E+i-L
modulo f, we have
6 .p— +6 (p—2)(p—3) 1,1 _ 1 - 1 1y\.p—
P m e~ gty oy - 0120 (R g g
*ﬁ(g*g)( — 122P77) —12(; — )P —2)aP” 0 fo| =0
(~B+ 1 Lyar 0 0 fs

(mod J(f)?) in A.
Therefore, we can take Q = («;;) in A such that Q - (f1, f2, f3)T =0 and

Sgp3 4 46 g3 G A gy L (L (2 —120772) (—f 41— Lyar?
Q= —bG- 1><y “1200) (G- -2 0 (med J(£)
(—h+1 21;>)$p ! 0 0

we can see that aq; ¢ (x y, ) + J(f).

(2)If p = 7, similar calculations lead to the following equations:

3_6ay 1,2 —z6
6.4 ' 1 1.5 e 6 _ 1,2 11$6 N
= ey~ H 16800 = sy pa® () o (mod (7, J(1))).
y? — 12z 5z 0
26 0 0 s

We can take Q = (a;) in A such that @ - (f1, f2, f3)T = 0 and

3—6zy 1,2 _ .6
—13 —42 42x1F 0 6.4 1 1.5 5 6 1,2 11m6
o= 0 o _1712 0o || " s @t +168633 Y n®
0 0 0 4 ye — 12z %% 0
12 .CL‘G 0 0
_42><1§8><12x5 —36x4 _ %x3+7xy+ 42><5168y2 — Ly 4,6
= Ly? 4 b — 2 af 0 (mod J(f)),
41,.6 0 0

127

we can see that a;; = aj; (mod J(f)), and a1y ¢ (22y,2%) + J(f) = (y2, 2) + J(f).

These constructions together with lemma [4.5| lead to the following proposition.

Proposition 4.6. Let A = Clx,y,2]/(f) where f = aP + y3 + 2%, p > 7 defines a hypersurface
cusp singularity, then there exists D € Der?(A) does not lie in der?(A).

Proof. With notations and calculations as above, there exists a matrix @ = (ajj)3x3 in A,

satisfying @ - (f1, f2, f3)" = 0, QT = Q (mod J(f)), and an ¢ (2%y,2) + J(f). Then d; =
Z;’ 1 @0z, 1 < i < 3 are three derivations in Der! (A), and d;(z;) — dj(x;) = a5 — aji € J(f).
By theorem (3.4 H and theorem 2.8 . there exists D € Der?(A), 63(D) = (d},d},d}) such that

di(z) — dy(z) € J(f) in A. And di(2) = a11 ¢ (a?y,2?) + J(f) forces di(z) ¢ (a?y, 2*) + J(f).
So D does not lie in der?(A) follows from lemma O

Now we can complete the proof of the main theorem [B]

Proof. (of main theorem Thm follows from propositions and (I
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