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Abstract. Let A = F[x1, · · · , xn]/(f1, · · · , fn) be a graded complete
intersection Artinian algebra where F is a field of characteristic zero. The
grading on A induces a natural grading on DerF(A). Halperin proposed
a famous conjecture: DerF(A)<0 = 0, which implies the collapsing of the
Serre spectral sequence for an orientable fibration with the fiber being an
elliptic space and having no cohomology in odd degrees. In the context
of singularity theory, the second author proposed the same conjecture
in the special case that fi = ∂f/∂xi for a single polynomial f . H. Chen,
the second author and Zuo ([CYZ]) proved Halperin conjecture assuming
that the degrees of fi are bounded below by a constant depending on
the number n of variables and the degrees of variables. In this paper,
in the special case that fi = ∂f/∂xi for a single polynomial f , we refine
their result by giving a better bound which is independent of n.

1. introduction

Throughout this article, we work over a field F of characteristic zero.
Let Pn = F[x1, · · · , xn] be the polynomial ring of n weighted variables
x1, · · · , xn with positive integer weights w1, · · · , wn. Suppose that f1, · · · , fn
are weighted homogeneous polynomials such that A = Pn/(f1, · · · , fn) is a
complete intersection Artinian algebra. The grading on A induces a natural
grading on DerF(A), where DerF(A) is the A-module of derivations on A.
In 1976, Halperin proposed a famous conjecture (see [FHT, p.516]):

Conjecture 1.1 (Halperin conjecture). There is no non-zero negative weight
derivation on a graded complete intersection Artinian algebra.

Halperin conjecture is one of the most important questions in rational
homotopy theory. Indeed, a positive answer of this conjecture implies the
collapsing of the Serre spectral sequence at E2 level for an orientable fibra-
tion F ↪→ E → B such that the fiber F is an elliptic space with cohomology
vanishing in odd degrees (in this case the cohomology algebra of F is a com-
plete intersection Artinian algebra). Recall that a 1-connected topological
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space X is called an elliptic space if its cohomology H∗(X,F) and homotopy
group π∗(X)⊗ F are finite dimensional vector spaces.

In the context of singularity theory, the second author proposed the same
conjecture in the special case that fi = ∂f/∂xi for a single polynomial f .

Conjecture 1.2 (Yau conjecture). Suppose that f is a weighted homoge-
neous polynomial such that A = Pn/(∂f/∂x1, · · · , ∂f/∂xn) is a complete
intersection Artinian algebra. Then there is no non-zero negative weight
derivation on A.

In this case, A is the moduli algebra of the hypersurface singularity defined
by f = 0. Assuming this conjecture is true, Xu and the second author ([XY,
Theorem B]) gived a micro-local characterization of quasi-homogeneous hy-
persurface singularities, only using the Lie algebra of derivations on the
moduli algebra (which is called Yau algebra).

Halperin conjecture has remained unresolved for a long time except in
some special cases:

• w1 = · · · = wn ([AM, Proposition 4.1]);
• n = 2 ([AM, Theorem 4.3] and [Tho, Theorem 3]);
• n = 3 ([Che2, Theorem 3.1] and [Lup, Theorem 1]);
• A is the cohomology algebra of a homogeneous space G/U , where
G is a connected compact Lie group and U is its closed subgroup of
maximal rank ([ST, Theorem A′]);

• Pn/(f2, · · · , fn) is reduced and deg f1 ≥ deg fi, i = 1, · · · , n ([PP]);
• all the polynomials f1, · · · , fn are homogeneous in the grading given

by the length of monomials ([Mar, Theorem 3]);
• the formal dimension of A is at most 20 ([KW]);
• all the polynomials f1, · · · , fn have large enough degrees ([CYZ,

Main Theorem A]).
Yau conjecture has been confirmed in the cases that:

• n=2,3 ([CXY, Theorem 2.2 and 2.3]);
• n=4 ([Che1, Theorem 2.1]);
• w1 ≥ w2 · · · ≥ wn and wn ≥ w1/2 ([YZ, Main Theorem]);

Let F be a 1-connected topological space such that the graded vector
space H∗(F,F) is finite dimensional and evenly graded (i.e. cohomology
vanishes in odd degrees). Then H∗(F,F) is a graded Artinian algebra. In
[Mei, Lemma 2.5], it was shown that if the cohomology algebra H∗(F,F) has
no non-zero negative weight derivations, then the Serre spectral sequence
of any orientable fibration with fiber F collapses at E2 level. If the fiber
F satisfies an additional condition that dimπ∗(F ) ⊗ F < ∞, then F is
an elliptic space. According to [Hal], in this case the cohomology algebra
H∗(F,F) is a complete intersection graded Artinian algebra and then the
Halperin conjecture implies the collapsing of the Serre spectral sequences.
However, if π∗(F )⊗F is infinite dimensional, H∗(F,F) may not be complete
intersection and the Halperin conjecture is not applicable. This is the reason
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why the study of the nonexistence of negative weight derivations on non-
complete intersection graded Artinian algebras is more important since we
can allow the fiber to be even non-elliptic space.

H. Chen, the second author and Zuo ([CYZ]) gave a positive result to
Halperin conjecture in the case that the degrees of fj are larger than some
lower bound, without the condition of being complete intersection, i.e. the
number of fj may be large than that of variables xi.

Theorem 1.3 (Main Theorem A in [CYZ]). Let Pn = F[x1, · · · , xn] be
the polynomial ring of n weighted variables x1, · · · , xn with positive integer
weights w1 ≥ w2 ≥ · · · ≥ wn (n ≥ 2). Suppose that f1, · · · , fm are weighted
homogeneous polynomials with degrees greater than (m − 1)(w1w2)

n−1 and
A = Pn/(f1, · · · , fm) is an Artinian algebra. Then there are no non-zero
negative weight derivations on A.

Remark 1.4. Note that in the non-complete intersection case there are
some counter examples if the degrees of fj are small. Hence it is necessary
to assume that the degrees of fj are bounded below. However, the bound
in Theorem 1.3 may not be sharp.

It is notable that the bound in Theorem 1.3 tends to infinity as n tends
to infinity. In this paper, in the special case that fi = ∂f/∂xi for a single
polynomial f , we refine Theorem 1.3 by giving a better bound which is
independent of n (only depending on the degrees of variables).

Theorem 1.5. Let Pn = F[x1, · · · , xn] be the weighted polynomial ring of n
weighted variables x1, · · · , xn with positive integer weights w1 ≥ w2 ≥ · · · ≥
wn. Let f be a weighted homogeneous polynomials with degrees greater than
w2
1 − w1 + 1 such that

A = Pn/(∂f/∂x1, · · · , ∂f/∂xn)
is an Artinian algebra. Then there is no non-zero negative weight derivation
on A.

Remark 1.6. In the above theorem, A is a complete intersection algebra.
In this case we expect that A has no non-zero negative weight derivations
even when the degree of f is small. So the bound in the above theorem is
not sharp.

In the general case, we also expect that the bound in Theorem 1.3 can be
improved. Indeed, we have the following conjecture, inspired by Example
1.7.
Optimal Generalized Halperin Conjecture. Let Pn = F[x1, · · · , xn] be
the weighted polynomial ring of n weighted variables x1, · · · , xn with positive
integer weights w1 ≥ w2 ≥ · · · ≥ wn. Suppose that f1, · · · , fm are weighted
homogeneous polynomials with degrees greater than (m − 1)(w1 − 1) and
A = Pn/(f1, · · · , fm) is an Artinian algebra. Then there are no non-zero
negative weight derivations on A.



4 BINGYI CHEN AND STEPHEN S.-T. YAU

Example 1.7. Let x, y be two weighted variables with positive integer
weights w1, w2 such that aw2 = w1 − 1, where a is a positive integer. Con-
sider m weighted homogeneous polynomials

(f1, · · · , fm) =
(
xm−1, xm−2ya, xm−3y2a, · · · , xy(m−2)a, y(m−1)a

)
.

Then A = F[x, y]/(f1, · · · , fm) is an Artinian algebra. We have
deg fm = (m− 1)aw2 = (m− 1)(w1 − 1)

and
deg fj = (m− j)w1 + (j − 1)aw2

= (m− j)w1 + (j − 1)(w1 − 1)

> (m− 1)(w1 − 1)

for any j = 1, · · · ,m− 1. On A there exists a non-zero derivation
D = ya∂/∂x

of negative weight -1.

Sketch of the proof of Theorem 1.5. The main tool we use is the new
weight type, which was first introduced by H. Chen [Che2] and further devel-
oped in [CYZ]. They associated any negative weight derivation D on Pn with
a new weight type (`1, · · · , `n) controlled by parameters ε1, · · · , εn (see Def-
inition 3.1). Let f be a weighted homogeneous polynomial in Pn such that
A = Pn/(f1, · · · , fn) is an Artinian algebra, where fi = ∂f/∂xi. Suppose
that there is a non-zero negative weight derivation on A. It induces a non-
zero negative weight derivation D on Pn preserving the ideal (f1, · · · , fn).
Let (`1, · · · , `n) be the new weight type associated to D controlled by pa-
rameters ε1, · · · , εn. In [CYZ] the author showed that, after changing the
coordinate system and adjusting the parameters, the new weight type will
satisfy the following: there exists i0 ∈ {1, · · · , n} such that

(1) `i0/wi0 > `i/wi for any i 6= i0, and
(2) Dmax = p∂/∂xi0 , where p ∈ Pn which is independent of the variable

xi0 and Dmax is the part of D of highest degree with respect to the
new weight type.

Since Pn/(f1, · · · , fn) is an Artinian algebra, there is fe such that xai0 appears
in fe with non-zero coefficient. Let (fe)max be the part of f of highest degree
with respect to the new weight type. It follows from (1) that (fe)max = xai0
(omitting the coefficient) as fe is weighted homogeneous with respect to the
original weight type. Let g = Dafe and gmax be the part of g of highest
degree with respect to the new weight type. Then we have

gmax = (Dmax)
a(fe)max = pa (omitting the coefficient),

which implies that g 6= 0. Note that g ∈ (f1, · · · , fn) as D preserves the ideal
(f1, · · · , fn), there is fd such that deg fd ≤ deg g ≤ deg fe − a (with respect
to the original weight type), where the second inequality follows from the
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fact that D is of negative weight and g = Dafe. As deg fi = deg f − wi for
any i, we have fe−fd = wd−we, which implies that a ≤ wd−we. Therefore,

deg f = deg fe + we = awi0 + we ≤ (wd − we)wi0 + we.

It is not hard to check that the above formula is no more than w2
1 −w1 + 1

(assuming that w1 ≥ · · · ≥ wn). Therefore, if we assume that deg f >
w2
1 − w1 + 1, A has no no-zero negative weight derivations.

The paper is organized as follows. In Section 2 we recall some defini-
tions and properties related to derivations. In Section 3 we introduce the
main technical tool – the new weight type associated with a negative weight
derivation and controlled by a group of parameters. In Section 4 we adjust
parameters to obtain a new weight type which meets our needs. We shall
give the proof of Theorem 1.5 in Section 5.

Notation. (1) Let f ∈ F[x1, · · · , xn] be a polynomial and g =
∏

xaii be a
monic monomial. We say g ∈ f if

∏
xaii appears in the expansion of f with

non-zero coefficient.
(2) Let S be a finite set. We denote the cardinality of S by #S.
(3) Let a, b be two real numbers. We say a is divisible by b if a/b is an

integer.

2. derivations

Let A be a commutative algebra over F. We say a linear endomorphism
D of A is a derivation on A if it satisfies the Leibniz rule:

(2.1) D(ab) = D(a)b+ aD(b) ∀a, b ∈ A.

We denote the A-module that consists of all the derivations on A by DerF(A).
We say a commutative algebra A is a graded algebra, if A = ⊕∞

i=0Ai,
where Ai are linear subspaces of A and satisfy that Ai · Aj ⊆ Ai+j for
any non-negative integers i, j. Let D be a derivation on a graded algebra
A = ⊕∞

i=0Ai. We say D is of weight k if D(Ai) ⊆ Ai+k for any non-negative
integer i. In this case we denote the weight k of D by wt D.

Let Pn = F[x1, · · · , xn] be the polynomial ring of weighted variables
x1, · · · , xn with weights w1, · · · , wn, where each wi is a positive integer.
We call (w1, · · · , wn) a weight type of variables x1, · · · , xn. For any mono-
mial

∏n
i=1 x

ai
i , we define its (weighted) degree with respect to the weight

type (w1, · · · , wn) by
∑n

i=1 aiwi. Then Pn = ⊕∞
i=0(Pn)i is a graded algebra,

where (Pn)i is the linear subspace spanned by monomials of degree i. For
any non-zero polynomial f ∈ Pn, if f ∈ (Pn)i for some i, we say f is a
weighted homogeneous polynomial. We call i the (weighted) degree of f
and denote it by deg f .

Every derivation on the weighted polynomial ring Pn can be written as

(2.2) D = p1∂/∂x1 + · · ·+ pn∂/∂xn ,
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where pi ∈ Pn. Then D is of weight k if and only if pi is either the zero
polynomial or a weighted homogeneous polynomial with deg pi −wi = k for
i = 1, · · · , n.

Let I ⊆ Pn be an ideal generated by weighted homogeneous polynomials
f1, · · · , fm. Then Pn/I = ⊕∞

i=0(Pn/I)i is a graded algebra, where the i-th
graded pieces (Pn/I)i is the image of (Pn)i under the projection Pn → Pn/I.
The lemma below tells us that every derivation on Pn/I is induced by a
derivation on Pn.

Lemma 2.1. Let D be a derivation on Pn/I of weight d. Then there exists
a derivation D on Pn of weight d such that

(1) D(g) = D
(
g
)

for any g ∈ Pn;
(2) D(I) ⊆ I.

Here we denote by g the image of g under the projection Pn → Pn/I for any
g ∈ Pn.

Proof. Since D
(
xi
)

∈ (Pn/I)wi+d, there exists gi ∈ (Pn)wi+d such that
D
(
xi
)
= gi for i = 1, · · · , n. Define

(2.3) D = g1∂/∂x1 + · · ·+ gn∂/∂xn .

Then D is a derivation on Pn of weight d and D(xi) = D
(
xi
)

for any i.
Hence the first assertion holds since both D and D satisfy the Leibniz rule.

For any f ∈ I, we have

(2.4) Df = D
(
f
)
= D(0) = 0.

Hence Df ∈ I and the second assertion holds. □

3. New weight type

In this section, we will introduce our main technical tool – new weight
type. It was first introduced in H. Chen’s paper [Che2]. Then it was devel-
oped in [CYZ] and played a crucial role in the proof of Theorem 1.3. Though
some definitions and properties in this section can been found in [CYZ], for
the convenience of readers we will give complete proofs here.

Let Pn be the weighted polynomial ring of n weighted variables x1, · · · , xn
with positive integer weights w1, · · · , wn. Suppose that

(3.1) w1 ≥ w2 ≥ · · · ≥ wn.

Fix a negative weight derivation D on Pn and write

(3.2) D = p1∂/∂x1 + · · ·+ pn∂/∂xn ,

where pi is either a weighted homogeneous polynomial of degree wi + wt D
or the zero polynomial. Since wt D < 0, we have deg pi < wi, which by (3.1)
implies that pi is a polynomial of only variables xi+1, · · · , xn. In particular,
pn is a constant.
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Definition 3.1 (New weight type). Fix a non-zero negative weight deriva-
tion D on Pn as in (3.2). Given n real parameters (ε1, ε2, . . . , εn), we define
a new weight type (`1, · · · , `n) of variables x1, · · · , xn as follows.

Set `n = εn. Suppose `n, `n−1, · · · , `q+1 have been defined. Note that the
coefficient pq of ∂/∂xq in D is a polynomial of xq+1, · · · , xn. Then

(1) if pq is the zero polynomial, we set
(3.3) `q = εq;

(2) if pq is a non-zero polynomial, we set
(3.4)
`q = εq +max{`q+1iq+1 + `q+2iq+2 + · · ·+ `nin |xiq+1

q+1x
iq+2

q+2 . . . xinn ∈ pq}.
We call (`1, `2, . . . , `n) the new weight type associated with D and controlled
by parameters ε1, ε2, . . . , εn.

Remark 3.2. If we set

(3.5) εi =

{
−wt D, when pi is a non-zero polynomial,
wi, when pi is the zero polynomial,

the new weight type (`1, . . . , `n) coincides with the original weight type
(w1, · · · , wn).

Definition 3.3. Given a new weight type (`1, `2, . . . , `n), to distinguish with
the degree with respect to the original weight type (w1, · · · , wn), we denote
the degree with respect to the new weight type by Q-deg. More precisely,
for any polynomial f ∈ Pn, we denote
(3.6) Q-deg f = max{−∞, `1i1 + · · ·+ `nin | xi11 x

i2
2 . . . xinn ∈ f}.

If f = 0, then Q-deg f = −∞.
We denote by fmax the sum of terms in expansion of f with maximum

degrees with respect to the new weight type (`1, `2, . . . , `n). That is to say,
if we write f =

∑
α gα where each gα is a monomial, then

(3.7) fmax =
∑

Q-deg gα=Q-deg f

gα.

If f = 0, then fmax = 0.

By the definition of the new weight type, if pi is a non-zero polynomial,
then
(3.8) `i = εi + Q-deg pi.

Recall that D is a non-zero negative weight derivation on Pn as in (3.2).
We denote
(3.9) Q-deg D = max{Q-deg pi − `i | i = 1, · · · , n}
and
(3.10) Dmax =

∑
j∈S

(pj)max∂/∂xj ,
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where S = {i = 1, · · · , n | Q-deg pi − `i = Q-deg D}.
We denote

(3.11) εmin = min{εi | i = 1, · · · , n | pi is a non-zero polynomial}.

Proposition 3.4. With the above notations, we have

(3.12) Q-deg D = −εmin

and

(3.13) Dmax =
∑
pi ̸=0

ϵi=ϵmin

(pi)max∂/∂xi.

Proof. It follows from (3.8), (3.9), (3.10) and (3.11) directly. □

Proposition 3.5. With the above notations, for any non-zero polynomial
f ∈ Pn we have

(1) if Dmaxfmax 6= 0, then Dmaxfmax = (Df)max and Q-deg Df =
Q-deg f − εmin;

(2) if Dmaxfmax = 0, then Q-deg Df < Q-deg f − εmin.

Proof. First we prove that

(3.14) Q-deg Dg ≤ Q-deg D + Q-deg g

for any g ∈ Pn. Indeed, we have

(3.15) Dg = p1
∂g

∂x1
+ p2

∂g

∂x2
+ · · ·+ pn

∂g

∂xn

and

(3.16)
Q-deg (pi

∂g

∂xi
) ≤ Q-deg pi + Q-deg g − `i

≤ Q-deg D + Q-deg g

for any i = 1, · · · , n (the second inequality follows from (3.9)). Hence the
equality (3.14) holds.

For any f ∈ Pn, denote f ′ = f − fmax and D′ = D − Dmax. Then
Q-deg f ′ < Q-deg f and Q-deg D′ < Q-deg D. We have

(3.17)
Df = (Dmax +D′)(fmax + f ′)

= Dmaxfmax +Dmaxf
′ +D′fmax +D′f ′.

If Dmaxfmax 6= 0, by (3.10), we have

Dmaxfmax =
∑
i∈S

(pi)max
∂fmax

∂xi
,(3.18)

where S = {i = 1, · · · , n | Q-deg pi − `i = Q-deg D}. Hence

(3.19) Q-deg (Dmaxfmax) = Q-deg D + Q-deg f.
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On the other hand, by (3.14) we have

(3.20)
max{Q-deg (Dmaxf

′),Q-deg (D′fmax),Q-deg (D′f ′)}
< Q-deg D + Q-deg f.

Hence Q-deg Df = Q-deg D + Q-deg f . By Proposition 3.4, Q-deg D =
−εmin, which implies that Q-deg Df = Q-deg f − εmin.

If Dmaxfmax = 0, then Df = Dmaxf
′ +D′fmax +D′f ′. By the inequality

(3.20), we have Q-deg Df < Q-deg D + Q-deg f = Q-deg f − εmin. □

Corollary 3.6. If Df = 0, then Dmaxfmax = 0.

Proof. It follows from Proposition 3.5(1) directly. □

Proposition 3.7. Let (`1, `2, . . . , `n) be the new weight type associated with
D and controlled by parameters ε1, ε2, . . . , εn. Let ε be a real number such
that all εi are divisible by ε. Then

(1) all `i are divisible by ε;
(2) for any i, j ∈ {1, · · · , n}, if `i/wi − `j/wj > 0 then

(3.21) `i/wi − `j/wj ≥ ε/(wiwj).

Proof. (1) We prove the first assertion by induction on i. When i = n, by
the definition of the new weight type, we have `n = εn, which implies that
`n is divisible by ε.

Suppose that the first assertion holds for i = k+1, . . . , n. When i = k, if
pk is the zero polynomial, then `k = εk is divisible by ε. If pk 6= 0, since pk
is a polynomial of variables xk+1, · · · , xn, by inductive assumption Q-deg pk
is divisible by ε, which implies that `k = Q-deg pk + εk is divisible by ε.

(2) By the first assertion we can write `i = aε and `j = bε where a and b
are integers. Then

(3.22) `i
wi

− `j
wj

=
`iwj − wi`j

wiwj
=

(awj − bwi)ε

wiwj
.

Since `i/wi − `j/wj > 0, we have awj − bwi > 0. It follows from awj − bwi

is an integer that awj − bwi ≥ 1. Therefore `i/wi − `j/wj ≥ ε/(wiwj). □

The next proposition gives a upper bound for the ratio of the new weight
type and the original weight type.

Proposition 3.8. If `i0/wi0 = max{`i/wi | i = 1, · · · , n} and pi0 is a
non-zero polynomial, then
(3.23) `i/wi ≤ εi0/(−wt D)

for any i = 1, · · · , n.

Proof. It suffices to prove that `i0
/
wi0 ≤ εi0

/
(−wt D). Indeed, we have

(3.24) `i0
wi0

=
Q-deg pi0 + εi0
deg pi0 − wt D

.



10 BINGYI CHEN AND STEPHEN S.-T. YAU

Since `i/wi ≤ `i0/wi0 for any i = 1, · · · , n and pi0 is weighted homogeneous
with respect to the original weight type, we have

(3.25) Q-deg pi0
deg pi0

≤ `i0
wi0

.

It follows from (3.24) and (3.25) that

(3.26) εi0
−wt D

≥ `i0
wi0

.

□

4. Adjusting parameters

The main result of this section (Theorem 4.5) can be found in the proof
of [CYZ, Main Theorem A]. For the convenience of readers, we will give a
complete proof below.

Let Pn = F[x1, · · · , xn] be the polynomial ring of n weighted variables
x1, · · · , xn with positive integer weights w1 ≥ w2 ≥ · · · ≥ wn. Fix a non-
zero negative weight derivation D on Pn as in (3.2), the new weight type
(`1, · · · , `n) is controlled by parameters ε1, · · · , εn. By adjusting parameters,
we can make the new weight type suit our needs.

4.1. Preparation. In this subsection, we will explain how the new weight
type changes as the parameters change.

Proposition 4.1. Take two groups of parameters (ε1, · · · , εn) and (ε′1, · · · , ε′n).
Suppose that there exist i0 ∈ {1, · · · , n} and a real number ∆ ≥ 0 such that

(4.1) ε′i =

{
εi +∆, if i = i0,
εi, if i 6= i0.

Let (`1, · · · , `n) and (`′1, · · · , `′n) be the new weight types controlled by the
εi and the ε′i respectively. We denote the degree with respect to the new
weight types (`1, · · · , `n) and (`′1, · · · , `′n) by Q-deg and Q′-deg respectively
(cf. Definition 3.3). Then we have

(1) `′i = `i for any i ∈ {i0 + 1, i0 + 2, · · · , n};
(2) `′i0 − `i0 = ∆;
(3) 0 ≤ `′i − `i ≤ wi∆ for any i ∈ {1, · · · , n}.

Proof. (1) When i0 = n, there is nothing further to prove, so we may suppose
that i0 < n. By (4.1), we have ε′i = εi for any i = i0 + 1, · · · , n. We will
show the first assertion by decreasing induction on i. When i = n > i0, we
have `n = εn and `′n = ε′n, which implies that `′n = `n.

Suppose that the assertion (1) holds for i = k + 1, . . . , n where k > i0.
When i = k, since k > i0, we have εk = ε′k. If pk is the zero polynomial,
then `k = εk and `′k = ε′k, which implies that `′k = `k. If pk 6= 0, since pk
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is a polynomial of variables xk+1, · · · , xn, by inductive assumption we have
Q-deg pk = Q′-deg pk. Therefore
(4.2) `′k − `k = (Q′-deg pk + ε′k)− (Q-deg pk + εk) = ε′k − εk = 0.

(2) If pi0 is the zero polynomial, then `i0 = εi0 and `′i0 = ε′i0 = εi0 + ∆,
which implies that `′i0 = `i0 + ∆. If pi0 6= 0, since pi0 is a polynomial of
variables xi0+1, · · · , xn, it follows from the assertion (1) that Q-deg pi0 =
Q′-deg pi0 . Therefore
(4.3) `′i0 − `i0 = (Q′-deg pi0 + ε′i0)− (Q-deg pi0 + εi0) = ε′i0 − εi0 = ∆.

(3) We will show the assertion (3) by decreasing induction on i. When
i = n, we have `n = εn and `′n = ε′n, which implies that 0 ≤ `′n − `n ≤ ∆ ≤
wn∆.

Suppose the assertion (3) holds for i = k+1, . . . , n. When i = k, if pk = 0
then we have `k = εk and `′k = ε′k, which implies that 0 ≤ `′k − `k ≤ ∆ ≤
wk∆. So we may suppose that pk 6= 0. Note that pk is a polynomial of
variables xk+1, xk+2, · · · , xn. By inductive assumption, for any monomial
g = x

ak+1

k+1 · · ·xann ∈ pk we have

(4.4)

0 ≤ Q′-deg g − Q-deg g =
n∑

i=k+1

ai(`
′
i − `i)

≤
n∑

i=k+1

aiwi∆

= ∆deg g = ∆deg pk.

Hence 0 ≤ Q′-deg pk − Q-deg pk ≤ ∆deg pk. Therefore

(4.5)

0 ≤ `′k − `k = (Q′-deg pk + ε′k)− (Q-deg pk + εk)

= (Q′-deg pk − Q-deg pk) + (ε′k − εk)

≤ ∆deg pk +∆

≤ (deg pk − wt D)∆

= wk∆.

□
Corollary 4.2. Under the assumptions in Proposition 4.1, we suppose ad-
ditionally that there exists ε > 0 such that each εi is divisible by ε and that
∆ in (4.1) satisfies w1w2∆ < ε. Then for any i, j ∈ {1, · · · , n}, we have
(4.6) `i/wi > `j/wj =⇒ `′i/wi > `′j/wj .

Proof. Take i, j ∈ {1, · · · , n} with `i/wi > `j/wj . It follows from Proposi-
tion 3.7(2) and w1 ≥ · · · ≥ wn that
(4.7) `i/wi − `j/wj ≥ ε/(wiwj) ≥ ε/(w1w2).

On the other hand, by Proposition 4.1(3) we have
(4.8) `′j/wj − `j/wj ≤ (wj∆)/wj = ∆ < ε/(w1w2).
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Therefore

(4.9) `′j/wj < `i/wi ≤ `′i/wi,

where the second inequality follows from `′i ≥ `i (the third assertion in
Proposition 4.1). □

Corollary 4.3. Under the assumptions in Proposition 4.1, we suppose ad-
ditionally that there exists ε > 0 such that each εi is divisible by ε and that
∆ in (4.1) satisfies M∆ ≤ ε, where M is a positive real number. Let g1, g2
be two monomials such that deg g1 < M . Then

(4.10) Q-deg g1 < Q-deg g2 =⇒ Q′-deg g1 < Q′-deg g2.

Proof. We claim that for any monomial g we have

0 ≤ Q′-deg g − Q-deg g ≤ ∆deg g.(4.11)

Indeed, if we write g = x
ak+1

k+1 · · ·xann (omitting the coefficient), by Proposi-
tion 4.1(3) we have

(4.12)

0 ≤ Q′-deg g − Q-deg g =
n∑

i=1

ai(`
′
i − `i)

≤
n∑

i=1

aiwi∆

= ∆deg g.

Hence the inequality (4.11) holds.
Let g1, g2 be two monomials with deg g1 < M and Q-deg g1 < Q-deg g2.

By Proposition 3.7(1) we have each `i is divisible by ε, which implies that
Q-deg g1 and Q-deg g2 are divisible by ε. Therefore

(4.13) Q-deg g2 − Q-deg g1 ≥ ε.

It follows from the inequality (4.11) that

(4.14) Q′-deg g1 − Q-deg g1 ≤ ∆deg g1 < M∆ ≤ ε.

Therefore

(4.15) Q′-deg g1 < Q-deg g2 ≤ Q′-deg g2.

□

Proposition 4.4. Fix a positive real number M , an integer i0 ∈ {1, · · · , n}
and n real numbers (e1, · · · , en). Let b : i 7→ bi be a one to one mapping
from {1, 2, . . . , n} to itself. We set εi = ei + 1/M bi for any i = 1, · · · , n and
let (`1, · · · , `n) be the new weight type controlled by the εi. If g, h are two
monic monomials such that deg g, deg h < M , then

(4.16) Q-deg g = Q-deg h ⇐⇒ g = h.
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Proof. Let d be the inverse mapping of b : i 7→ bi. That is to say, bd(i) = i for
any i = 1, 2, . . . , n. We will define by induction a sequences of parameters
ε
(0)
i , ε

(1)
i , . . . , ε

(n)
i . First we set

(4.17) (ε
(0)
1 , · · · , ε(0)n ) = (e1, · · · , en).

Suppose the (j − 1)-th group of parameters (ε
(j−1)
1 , . . . , ε

(j−1)
n ) has been

defined. We define the j-th group of parameters as follows (j > 0):

(4.18) ε
(j)
i =

{
ε
(j−1)
i + 1/M j i = d(j),

ε
(j−1)
i i 6= d(j).

It is easy to see that the n-th group of parameters (ε(n)1 , · · · , ε(n)n ) = (ε1, · · · , εn).
Let (`

(j)
1 , · · · , `(j)n ) be the new weight type controlled by the j-th group of

parameters (ε
(j)
1 , · · · , ε(j)n ) and we denote the degree with respect to this

new weight type by Q(j)-deg (cf. Definition 3.3). Note that Q(n)-deg f =
Q-deg f for any polynomial f .

Let g, h be two monic monomials with deg g, deg h < M and Q-deg g =
Q-deg h. Then Q(n)-deg g = Q(n)-deg h. We claim that
(4.19) Q(j)-deg g = Q(j)-deg h ∀j = 0, · · · , n.

Indeed, if this is not the case, there exists j such that Q(j)-deg g 6= Q(j)-deg h.
Without loss of generality, we may suppose that Q(j)-deg g < Q(j)-deg h.
It follows from Corollary 4.3 (take ε = 1/M j and ∆ = 1/M j+1) that
Q(j+1)-deg g < Q(j+1)-deg h. Applying Corollary 4.3 again (taking ε =

1/M j+1 and ∆ = 1/M j+2), we obtain Q(j+2)-deg g < Q(j+2)-deg h. Repeat
the above process and finally we obtain Q(n)-deg g < Q(n)-deg h. This is a
contradiction and hence (4.19) holds.

Write g = xa11 · · ·xann and h = x
a′1
1 · · ·xa

′
n

n . We will prove by induction
that ai = a′i for any i = 1, · · · , n. Suppose that ai = a′i for i = 1, · · · k − 1.
When i = k, let j = bk, then we have d(j) = k. It follows from Proposition
4.1 that

(4.20)
{
`
(j)
k − `

(j−1)
k = 1/M j > 0,

`
(j)
i − `

(j)
i = 0 ∀i = k + 1, · · · , n.

Therefore
(4.21){

Q(j)-deg g = Q(j−1)-deg g + a1(`
(j)
1 − `

(j−1)
1 ) + · · ·+ ak(`

(j)
k − `

(j−1)
k ),

Q(j)-deg h = Q(j−1)-deg h+ a′1(`
(j)
1 − `

(j−1)
1 ) + · · ·+ a′k(`

(j)
k − `

(j−1)
k ).

By (4.19) we have Q(j)-deg g = Q(j)-deg h and Q(j−1)-deg g = Q(j−1)-deg h.
Note that ai = a′i for any i < k by inductive assumption. Therefore

(4.22) ak(`
(j)
k − `

(j−1)
k ) = a′k(`

(j)
k − `

(j−1)
k ).

Since `
(j)
k − `

(j−1)
k > 0, we have ak = a′k and the proof is completed. □
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4.2. Perfect parameters. In this subsection, we will adjust parameters
and take a coordinate transformation to obtain a new weight type meeting
our needs, which is crucial in the proof of Main Theorem 1.5.

We say a coordinate transformation

(4.23) x′i = φi(x1, · · · , xn), i = 1, · · · , n,

preserves the weight type (w1, · · · , wn) if each φi is a weighted homogeneous
polynomial of degree wi with respect to the weight type (w1, · · · , wn). The
weight of the new variable x′i is still wi.

Theorem 4.5. Let Pn be the polynomial ring of n variables x1, · · · , xn with
positive integer weights w1 ≥ w2 ≥ · · ·wn (n ≥ 2). Fix a positive real
number M > w1w2. Let D be a non-zero negative weight derivation on
Pn as in (3.2). Then after a coordinate transformation which preserves the
weight type (w1, · · · , wn), in the new coordinate system there exist parameters
ε1, ε2, . . . , εn such that the new weight type (`1, `2, . . . , `n) associated with D
and controlled by these parameters has the following properties:

(1) there exists i0 ∈ {1, · · · , n} such that
(1a) εi0 < εi for any i = 1, · · · , n such that pi 6= 0 and i 6= i0;
(1b) `i0/wi0 > `i/wi for any i = 1, · · · , n such that i 6= i0;
(1c) pi0 is a non-zero polynomial;

(2) for any two monic monomials g, h such that deg g, deg h < M , we
have

(4.24) Q-deg g = Q-deg h ⇐⇒ g = h.

To prove this theorem, we rewrite it into a more complicated form (Propo-
sition 4.6) that can be proved by induction. We will prove Proposition 4.6
first and use it to prove Theorem 4.5.

Proposition 4.6. Fix a positive real number M > w1w2 and a non-zero
negative weight derivation D on Pn as in (3.2). Let I be non-empty subset of
{1, 2, . . . , n} with k elements and let b : i 7→ bi be a one to one mapping from
{1, 2, . . . , n} \ I to {1, 2, . . . , n− k}. Set parameters ε1, · · · , εn as follows:

(4.25) εi =


1 i ∈ I and pi 6= 0,
0 i ∈ I and pi = 0,
1 + 1/M bi i /∈ I and pi 6= 0,
1/M bi i /∈ I and pi = 0.

Let (`1, · · · , `n) be the new weight type associated with D and controlled by
parameters ε1, · · · , εn. Denote Imax = {e | `e/we ≥ `i/wi, i = 1, . . . , n} and
J = {e | pe 6= 0}. Suppose Imax ⊆ I and Imax ⊆ J . Then after a coordinate
transformation which preserves the original weight type (w1, · · · , wn) (we
denote the new coordinate system by x′1, · · · , x′n), one of the following two
assertions holds.
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(a) In the new coordinate system, there exists another group of parameter
(ε′1, · · · , ε′n) such that the new weight type (`′1, · · · , `′n) controlled by these
parameters satisfies Theorem 4.5(1) and (2).

(b) In the new coordinate system, if we write

(4.26) D = p′1
∂

∂x′1
+ p′2

∂

∂x′2
+ · · ·+ p′n

∂

∂x′n

and denote J ′ = {e | p′e 6= 0}, then #J ′ < #J .

Remark 4.7. When #J = 1, the assertion (b) can not hold because J ′ can
not be the empty set (since D 6= 0).

Proof. We prove the proposition by induction on the cardinality of I. When
#I = 1, denote the unique element in I by i0. Since Imax ⊆ I, Imax = {i0}.
Hence
(4.27) `i0/wi0 > `i/wi

for any i = 1, · · · , n with i 6= i0. Since i0 ∈ Imax ⊆ J , we have pi0 is a
non-zero polynomial, which implies that εi0 = 1 (see (4.25)). For any i such
that pi 6= 0 and i 6= i0 (so i /∈ I), we have εi ≥ 1+Mn−1 (see (4.25)). Define
a new group of parameters (ε′1, · · · , ε′n) as follows:

(4.28) ε′i =

{
εi i 6= i0,

εi + 1/Mn i = i0.

Then ε′i0 = 1 + 1/Mn. For any i such that pi 6= 0 and i 6= i0, we have

(4.29) ε′i = εi ≥ 1 + 1/Mn−1 > ε′i0 .

Let (`′1, · · · , `′n) be the new weight type controlled by parameters ε′1, · · · , ε′n.
By (4.27) and Corollary 4.2 (take ε = 1/Mn−1,∆ = 1/Mn, note that M >
w1w2), we have
(4.30) `′i0/wi0 > `′i/wi

for any i = 1, · · · , n with i 6= i0. Hence the new weight type (`′1, · · · , `′n)
satisfies Theorem 4.5(1). By Proposition 4.4 it also satisfies Theorem 4.5(2).
Therefore the assertion (a) holds in the case that #I = 1.

Suppose that Proposition 4.6 holds when #I = 1, · · · , k−1. Now consider
that case that #I = k (k ≥ 2). There are two sub-cases: Imax = I or Imax

is a proper subset of I.
(1) Suppose that Imax is a proper subset of I. Take j0 ∈ I \ Imax. Define

another group of parameters as follows:

(4.31) ε′i =

{
εi + 1/(w1w2)

n−k+1 i = j0,

εi i 6= j0.

Let (`′1, . . . , `
′
n) be the new weight type controlled by parameters ε′1, · · · , ε′n.

Denote I ′max = {e | `′e/we ≥ `′i/wi, i = 1, . . . , n}.
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We claim that I ′max ⊆ Imax. Indeed, take k0 ∈ Imax, then `i/wi < `k0/wk0

for any i /∈ Imax. By Corollary 4.2 (take ε = 1/Mn−k and ∆ = 1/Mn−k+1,
note that M > w1w2), we have `′i/wi < `′k0/wk0 , which implies that i /∈ I ′max.
Therefore the claim that I ′max ⊆ Imax holds, which implies that I ′max ⊆
I \ {j0}.

For any i ∈ I ′max, we have i ∈ Imax ⊆ J , so pi is a non-zero polynomial.
Let I ′ = I \{j0}, then #I ′ = k−1 and I ′max ⊆ I ′. By inductive assumption,
Proposition 4.6 holds.

(2) Suppose that Imax = I. Write I = Imax = {i1, . . . , ik} and suppose
that i1 < i2 < · · · < ik. For any j ∈ I = Imax ⊆ J , since pj is a non-
zero polynomial, by (4.25) we have εj = 1. That is to say, εie = 1 for any
e = 1, · · · , k.

We claim that

(4.32) (pik−1
)max = cxaik(pik)max,

where c is a non-zero coefficient and a is a non-negative integer. We will
give the proof of this claim in Lemma 4.8 below since it is too long.

Note that deg(pik−1
)max = wik−1

+ wt D and deg(pik)max = wik + wt D,
we have wik−1

+ wt D = awik + wik + wt D, which implies that

(4.33) wik−1
= (a+ 1)wik .

Since ik−1, ik ∈ Imax, we have `ik−1
/wik−1

= `ik/wik . Hence

(4.34) `ik−1
= (a+ 1)`ik .

Next we will apply a coordinate transformation which preserves the orig-
inal weight type (w1, · · · , wn). The coordinate change is of the following
form:

(4.35)

x1 = x′1
. . . . . .

xik−1
= x′ik−1

+ c(x′ik)
a+1/(a+ 1)

. . . . . .
xn = x′n.
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Then we have

(4.36)

∂

∂x′1
=

∂

∂x1
. . . . . .

∂

∂x′ik−1

=
∂

∂xik−1

∂

∂x′ik
=

∂

∂xik
+ c(x′ik)

a ∂

∂xik−1

. . . . . .
∂

∂x′n
=

∂

∂xn
.

In the new coordinate system, we write

(4.37) D = p′1
∂

∂x′1
+ p′2

∂

∂x′2
+ · · ·+ p′n

∂

∂x′n
.

It follows from (4.36) that

(4.38)
{
p′j = pj if j 6= ik−1,

p′ik−1
= pik−1

− c(x′ik)
apik = pik−1

− cxaikpik .

Denote J ′ = {e | p′e 6= 0}. If p′ik−1
is the zero polynomial, then #J ′ =

#J − 1, which implies that assertion (b) holds. So we may suppose that
p′ik−1

6= 0. In this case we have

(4.39) J ′ = J.

Let (`′1, . . . , `
′
n) be the new weight type of the new coordinate system

(x′1, · · · , x′n) associated with D and controlled by the same group of param-
eters (ε1, . . . , εn). We denote by Q′-deg the degree with respect to the new
weight type (`′1, . . . , `

′
n) (cf. Definition 3.3).

We claim that `′j = `j if j > ik−1. Indeed, for any j > ik−1 we have
p′j = pj . Since pj is independent of the variable xik−1

, the expansion of pj
in the original coordinate system is the same of that of p′j in the original
coordinate system (because xl = x′l for any l 6= ik−1). Therefore `′j = `j for
any j > ik−1.

We claim that `′ik−1
< `ik−1

. Indeed, by (4.32) and the second equality
in (4.38), we have Q-deg p′ik−1

< Q-deg pik−1
. Since p′ik−1

is a polynomial
of only variables x′j (j > ik−1), it has the same expansion in the original
and new coordinate system (because x′j = xj for any j > ik−1). Note that
`′j = `j for any j > ik−1, we have

(4.40) Q′-deg p′ik−1
= Q-deg p′ik−1

< Q-deg pik−1
,

which implies that `′ik−1
< `ik−1

.
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We claim that `′j ≤ `j for any j = 1, · · · , n. Indeed, by the above argument
we know that this claim holds for j ≥ ik−1. Suppose that the claim holds
for j + 1, j + 2, . . . , n, we will prove it holds for j (here j < ik−1). Take a
monomial g = x

aj+1

j+1 . . . xann in the expansion of pj in the original coordinate
system. Then in the new coordinate system

g = (x′j+1)
aj+1 . . .

(
x′ik−1

+
c

a+ 1
(x′ik)

a+1
)aik−1 . . . (x′n)

an .(4.41)

Note that
(4.42) Q′-deg (x′ik)

a+1 = (a+ 1)`′ik = (a+ 1)`ik = `ik−1

(The last equality follows from (4.34)). By inductive assumption and (4.42)
we have Q′-deg g ≤ Q-deg g. Hence Q′-deg pj ≤ Q-deg pj . Note that
p′j = pj (see (4.38), here j < ik−1), we have Q′-deg p′j ≤ Q-deg pj , which
implies that `′j ≤ `j and the claim holds.

Denote I ′max = {e | `′e/we ≥ `′i/wi, i = 1, . . . , n}. For any i /∈ Imax, we
have
(4.43) `′i/wi ≤ `i/wi < `ik/wik = `′ik/wik ,

which implies that i /∈ I ′max. Therefore I ′max ⊆ Imax.
Note that

(4.44) `′ik−1
/wik−1

< `ik−1
/wik−1

= `ik/wik = `′ik/wik ,

we have I ′max ⊆ Imax \ {ik−1}. Hence I ′max is a proper subset of Imax = I.
Since I ′max ⊆ Imax ⊆ J and J = J ′ (see (4.39)), the condition that

I ′max ⊆ J ′ in Proposition 4.6 is still satisfied. Thus we successfully reduce
the case that Imax = I to case that I ′max is a proper subset of I, which has
been solved.

□
Lemma 4.8. Under the assumptions of Proposition 4.6, we additionally
suppose that k = #I ≥ 2 and I = Imax. Write I = {i1, i2, · · · , ik}, where
i1 < i2 < · · · < ik. Then
(4.45) (pik−1

)max = cxaik(pik)max,

where c is a non-zero coefficient and a is a non-negative integer.
Proof. Let d be the inverse mapping of b : i 7→ bi. That is to say, bd(i) = i
for any i = 1, 2, . . . , n− k. We define by induction a sequence of parameters
ε
(0)
i , ε

(1)
i , . . . , ε

(n−k)
i . First we set (ε

(0)
1 , . . . , ε

(0)
n ) as follow:

(4.46) ε
(0)
i =

{
1 pi 6= 0,
0 pi = 0.

Suppose that the (j−1)-th group of parameters (ε(j−1)
1 , . . . , ε

(j−1)
n ) has been

defined. We define the j-th group of parameters (j > 0) as follows:

(4.47) ε
(j)
i =

{
ε
(j−1)
i + 1/M j i = d(j),

ε
(j−1)
i i 6= d(j).
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It is easy to see that the (n−k)-th group of parameters (ε(n−k)
1 , · · · , ε(n−k)

n ) =

(ε1, · · · , εn). Let (`(j)1 , · · · , `(j)n ) be the new weight type controlled by the j-th
group parameters ε

(j)
i . Then (`

(n−k)
1 , · · · , `(n−k)

n ) = (`1, · · · , `n). We denote
the degree with respect to the new weight type (`

(j)
1 , · · · , `(j)n ) by Q(j)-deg

(cf. Definition 3.3). Note that Q(n−k)-deg h = Q-deg h for any polynomial
h.

For convenience we denote ik−1 = s and ik = t. Then s < t. Since s, t ∈
Imax, we have `s/ws = `t/wt, which implies that `(n−k)

s /ws = `
(n−k)
t /wt. We

claim

(4.48) `(j)s /ws = `
(j)
t /wt ∀j = 0, · · · , n− k.

Indeed, if this is not the case, then there exists j such that `(j)s /ws 6= `
(j)
t /wt.

Without loss of generality we may suppose that `
(j)
s /ws < `

(j)
t /wt. By

Corollary 4.2 (take ε = 1/M jand ∆ = 1/M j+1, note that M > w1w2), we
have `

(j+1)
s /ws < `

(j+1)
t /wt. Apply Corollary 4.2 again (Take ε = 1/M j+1

and ∆ = 1/M j+2) we obtain `
(j+2)
s /ws < `

(j+2)
t /wt. Repeat the above

process and finally we obtain `
(n−k)
s /ws < `

(n−k)
t /wt. This is a contradiction

and hence (4.48) holds.
Since s, t ∈ I = Imax, by the assumption that Imax ⊆ J in Proposition

4.6, we have ps and pt are non-zero polynomials. We claim that
(∗) For any monic monomial gs ∈ (ps)max and gt ∈ (pt)max, there exists a

non-negative integer a such that gs = xat gt.
Here (ps)max (resp. (pt)max) is the sum of terms in the expansion of ps (resp.
pt) with maximum degrees with respect to the new weight type (`1, · · · , `n).
We will prove Claim (∗) in five steps.

Step 1. First we prove that

(4.49)
{
`
(j)
s = Q(j)-deg gs + 1,

`
(j)
t = Q(j)-deg gt + 1,

for any j = 0, · · · , n − k. We will only show the first equality since the
same argument can be used to prove the second equality. For any monomial
h ∈ ps, since gs ∈ (ps)max, we have Q-deg h ≤ Q-deg gs. So Q(n−k)-deg h ≤
Q(n−k)-deg gs. We claim that

(4.50) Q(j)-deg h ≤ Q(j)-deg gs ∀j = 0, · · · , n− k.

Indeed, if this is not the case, then Q(j)-deg h > Q(j)-deg gs for some j.
Since deg ps < ws ≤ w1w2 < M , by Corollary 4.3 (take ε = 1/M j and
∆ = 1/M j+1), we have Q(j+1)-deg h > Q(j+1)-deg gs. Apply Corollary
4.3 again (Take ε = 1/M j+1 and ∆ = 1/M j+2) we obtain Q(j+2)-deg h >

Q(j+2)-deg gs. Repeat this process and finally we obtain Q(n−k)-deg h >
Q(n−k)-deg gs. This is a contradiction and hence the inequality (4.50) holds.
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Therefore

(4.51) Q(j)-deg ps = Q(j)-deg gs ∀j = 0, · · · , n− k.

Since s ∈ I = Imax ⊆ J , we have ps 6= 0 and ε
(j)
s = 1 for any j = 0, · · · , n−k.

It follows from (3.8) that `
(j)
s = Q(j)-deg gs + 1.

Step 2. Since gs ∈ (ps)max, gs is a monomial of variables xs+1, · · · , xn.
We will show that gs is independent of variables xs+1, · · · , xt−1, that is to
say, gs is a monomial of variables xt, xt+1, · · · , xn. Indeed, if this is not the
case, there exists e ∈ {s+1, . . . , t− 1} such that the exponent of xe in gs is
positive. Denote j = be, then d(j) = e. By Proposition 4.1 we have

(4.52)


`
(j−1)
i = `

(j)
i ∀i > e,

`
(j−1)
e < `

(j)
e ,

`
(j−1)
i ≤ `

(j)
i ∀i < e.

Note that gt is a monomial of variables xt+1, . . . , xn and t+ 1 > e, we have

(4.53) Q(j−1)-deg gt = Q(j)-deg gt.

Since the exponent of xe in gs is positive, we have

(4.54) Q(j−1)-deg gs < Q(j)-deg gs.

By (4.48) and (4.49) we have

(4.55)
{

Q(j−1)-deg gs + 1)/ws = (Q(j−1)-deg gt + 1)/wt,

Q(j)-deg gs + 1)/ws = (Q(j)-deg gt + 1)/wt.

The equations (4.53) and (4.54) are in contradiction with (4.55). Therefore
gs is a monomial of only variables xt, xt+1, · · · , xn.

Step 3. Write gs = xat g
′
s, here g′s is a monomial of variables xt+1, · · · , xn

and a is a non-negative integer. By (4.48),(4.49), the fact that ws = deg gs−
wt D and wt = deg gt − wt D, we have

(4.56)

`
(j)
t

wt
=

`
(j)
s

ws
=

Q(j)-deg gt + 1

deg gt − wt D

=
Q(j)-deg gs + 1

deg gs − wt D

=
a`

(j)
t + Q(j)-deg g′s + 1

awt + deg g′s − wt D

for any j = 0, 1, . . . , n− k. Hence

(4.57)

`
(j)
t

wt
=

`
(j)
s

ws
=

Q(j)-deg gt + 1

deg gt − wt D

=
Q(j)-deg g′s + 1

deg g′s − wt D
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for any j = 0, 1, . . . , n− k. Therefore

(4.58) Q(j)-deg gt − Q(j−1)-deg gt
deg gt − wt D

=
Q(j)-deg g′s − Q(j−1)-deg g′s

deg g′s − wt D

for any j = 1, . . . , n− k.
Step 4. Write g′s = x

αt+1

t+1 . . . xαn
n and gt = x

βt+1

t+1 . . . xβn
n . In this step we

will prove

(4.59) αi

deg g′s − wt D
=

βi
deg gt − wt D

∀i = t+ 1, . . . , n

by induction on i.
Suppose (4.59) holds for t + 1, t + 2, . . . , i − 1 and we will show it holds

for i. Denote j = bi, then d(j) = i. By Proposition 4.1(1) and (2), we have
`
(j)
i − `

(j−1)
i > 0 and `

(j)
i+1 − `

(j−1)
i+1 = · · · = `

(j)
n − `

(j−1)
n = 0. Hence

(4.60){
Q(j)-deg g′s − Q(j−1)-deg g′s = αt+1(`

(j)
t+1 − `

(j−1)
t+1 ) + · · ·+ αi(`

(j)
i − `

(j−1)
i ),

Q(j)-deg gt − Q(j−1)-deg gt = βt+1(`
(j)
t+1 − `

(j−1)
t+1 ) + · · ·+ βi(`

(j)
i − `

(j−1)
i ).

By (4.58), (4.60) and the inductive assumption for t+1, t+2, · · · , i− 1, we
have αi/(deg g

′
s − wt D) = βi/(deg gt − wt D). Therefore (4.59) holds.

Step 5. In this step we will prove deg g′s−wt D = deg gt−wt D. Suppose
deg g′s − wt D > deg gt − wt D, then by (4.59) we have αi ≥ βi for any i =

t+ 1, . . . , n (it is possible that αi = βi = 0). Let h = x
αt+1−βt+1

t+1 . . . xαn−βn
n ,

then g′s = hgt. If h = 1, then g′s = gt and the claim deg g′s − wt D =
deg gt − wt D holds. So we may suppose that h is not a constant, i.e. there
exists i ∈ {t+ 1, · · · , n} such that αi > βi. Note that (`

(n−k)
1 , . . . , `

(n−k)
n ) =

(`1, . . . , `n), by (4.57) (take j = n− k) we have

(4.61)

`t
wt

=
`s
ws

=
Q-deg gt + 1

deg gt − wt D

=
Q-deg g′s + 1

deg g′s − wt D

=
Q-deg h+ Q-deg gt + 1

deg h+ deg gt − wt D
.

It follows that

(4.62) `t
wt

=
Q-deg h

deg h
.

Since t ∈ Imax and t+ 1, · · · , n /∈ Imax, we have

(4.63) max
{ `t+1

wt+1
,
`t+2

wt+2
, · · · , `n

wn

}
<

`t
wt

.

Since h is a monomial of variables xt+1, . . . , xn, we have Q-deg h/ deg h <
`t/wt, which contradicts (4.62). Hence the assumption that deg g′s−wt D >
deg gt − wt D does not hold. By the same argument, it is impossible that
deg g′s − wt D < deg gt − wt D. Hence deg g′s − wt D = deg gt − wt D. By
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(4.59), we have αi = βi for any i = t+ 1, . . . , n, which implies that g′s = gt.
Therefore gs = xat gt and Claim (∗) holds.

Fix a monic monomial h ∈ (pt)max. For any two monic monomials g1, g2 ∈
(ps)max, by Claim (∗), there exist non-negative integers a1 and a2 such that
g1 = xa1t h and g2 = xa2t h. Since ps is weighted homogeneous with respect to
(w1, · · · , wn), we have deg g1 = deg g2. So
(4.64) a1wt + deg h = a2wt + deg h,

Since wt > 0, we have a1 = a2. Hence g1 = g2, which implies that (ps)max

is a monomial.
Fix a monic monomial g ∈ (ps)max. For any two monic monomials h1, h2 ∈

(pt)max, by Claim (∗), there exist non-negative integers a1 and a2 such that
g = xa1t h1 and g = xa2t h2. Hence xa1t h1 = xa2t h2. Since pt is a polynomial
of variables xt+1, · · · , xn, we have h1, h2 are independent of the variable xt,
which implies that h1 = h2. Therefore (pt)max is a monomial.

Since (ps)max and (pt)max are monomials, by Claim (∗), we have (ps)max =
cxat (pt)max, where c is a non-zero coefficient and a is a non-negative integer.
Therefore Lemma 4.8 holds. □

Now we return to the proof of Theorem 4.5.

Proof of Theorem 4.5. Denote J = {e | pe 6= 0}. We prove the theorem by
induction on the cardinality of J . Suppose the theorem holds for #J =
1, · · · , r − 1. Consider the case that #J = r. Set parameters ε1, · · · , εn as
follows:

(4.65) εi =

{
1 if pi 6= 0,
0 if pi = 0.

Let (`1, . . . , `n) be the new weight type associated with D and controlled by
the εi. Then

(4.66)
{
`i > 0 if pi 6= 0,
`i = 0 if pi = 0.

Hence pi is a non-zero polynomial for any i ∈ Imax. Let I = {1, 2, · · · , n},
then Imax ⊆ I. All conditions in Proposition 4.6 are satisfied. Hence either
the assertion (a) or the assertion (b) in Proposition 4.6 holds. If the assertion
(a) in Proposition 4.6 holds, then Theorem 4.5 is proved. If the assertion (b)
holds, then by inductive assumption the proof of Theorem 4.5 is completed
(note that the assertion (b) can not hold when #J = 1, see Remark 4.7). □

5. Proof of Theorem 1.5

Lemma 5.1. Let m be the maximal ideal of Pn generated by x1, · · · , xn.
Let f1, f2, . . . , fm ∈ m such that Pn/(f1, f2, . . . , fm) is an Artinian algebra.
Then for any i ∈ {1, 2, . . . , n}, there exists j ∈ {1, 2, . . . ,m} and a positive
integer a such that xai ∈ fj.
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Proof. Assume there exists i ∈ {1, 2, . . . , n} such that xai /∈ fj for any posi-
tive integer a and any j ∈ {1, 2, . . . ,m}. Then

(5.1) (f1, · · · , fm) ⊆ (x1, x2, . . . , xi−1, xi+1, . . . , xn).

Since Pn/(x1, . . . , xi−1, xi+1, . . . , xn) is a vector space of infinite dimension,
we have Pn/(f1, · · · , fm) is also of infinite dimension as a vector space, which
is in contradiction with that it is an Artinian algebra. □

Proof of Theorem 1.5. When n = 1, the theorem holds obviously. So we
may suppose that n ≥ 2. For convenience, we denote fi = ∂f/∂xi for any
i = 1, · · · , n. Suppose that Pn/(f1, · · · , fn) has a non-zero negative weight
derivation. By Lemma 2.1, there exists a non-zero negative weight derivation
D on Pn as in (3.2) such that Dfj ∈ (f1, f2, . . . , fn) for any j = 1, · · · , n.

By Theorem 4.5, after a coordinate transformation which preserves the
weight type (w1, · · · , wn), there exists a group of parameters (ε1, · · · , εn)
such that the assertions in Theorem 4.5 hold. Let (`1, · · · , `n) be the new
weight type associated with D and controlled by the εi. By Theorem 4.5(1b),
there exists a unique i0 ∈ {1, · · · , n} such that `i0/wi0 > `i/wi for any i 6= i0.
By Lemma 5.1, there exist e ∈ {1, · · · , n} and a positive integer a such that
xai0 ∈ fe. Note that fe is weighted homogeneous with respect to the original
weight type, we have

(5.2) (fe)max = cxai0 ,

where c is a non-zero coefficient. Hence

(5.3) deg fe = awi0 .

By Proposition 3.4 and Theorem 4.5(1a)(1c), we have

(5.4) Dmax = (pi0)max∂/∂xi0
.

We define polynomials g0, g1, · · · , ga as follows:

(5.5)
{
g0 = fe i = 0,

gi = Dgi−1 1 ≤ i ≤ a.

Then gi ∈ (f1, f2, · · · , fn) for any i = 0, · · · , a. We claim that

(5.6) (gi)max =
c(a!)

(a− i)!
(pi0)

i
maxx

a−i
i0

∀i = 0, 1, · · · , a.

Indeed, when i = 0, (g0)max = (fe)max = cxai0and the claim holds. Suppose
the claim holds for i = k − 1 (1 ≤ k ≤ a), then

(5.7)
Dmax(gk−1)max = (pi0)max

c(a!)

(a− k + 1)!

∂
(
(pi0)

k−1
maxx

a−k+1
i0

)
∂xi0

=
c(a!)

(a− k)!
(pi0)

k
maxx

a−k
i0

6= 0.
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Here the second equality follows from the fact that pi0 is independent of the
variable xi0 . By Proposition 3.5(1),

(gk)max = (Dgk−1)max = Dmax(gk−1)max

and hence the claim (5.6) holds. In particular, when i = a we have
(5.8) (ga)max = c(a!) · (pi0)amax 6= 0.

Hence ga 6= 0. Since ga ∈ (f1, · · · , fn), there exists d ∈ {1, · · · , n} such that

(5.9)
deg fd ≤ deg ga = a deg pi0

≤ a(wi0 − 1).

By (5.3) and (5.9) we have
(5.10) deg fe − deg fd ≥ a.

On the other hand, we have
deg fe − deg fd = (deg f − we)− (deg f − wd)

= wd − we.

Hence a ≤ wd − we. It follows from (5.3) that
(5.11) deg fe ≤ (wd − we)wi0 ,

which implies that

(5.12)

deg f = deg fe + we ≤ (wd − we)wi0 + we

≤ (wd − we)w1 + we

= wdw1 − (w1 − 1)we

≤ w2
1 − w1 + 1.

This is a contradiction. Therefore Pn/(f1, · · · , fn) has no non-zero negative
weight derivations. □
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