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ABSTRACT. In this paper, we introduce many new invariants to singularities, i.e., higher order
derivations of moduli algebras of isolated hypersurface singularities. We investigate their prop-
erties and propose several conjectures for these invariants. In particular, we verify an inequality
conjecture on the dimension of Der?/Der! for the case of binomial singularities. In addition,
we verify the Nakai Conjecture for the case of Brieskorn singularities.
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1. INTRODUCTION

Let (V,0) C (C™,0) be an isolated hypersurface singularity defined by the holomorphic func-
tion f : (C",0) — (C,0). Then the moduli algebra M (V) := On/(f,%,---,%) is finite
dimensional. We also denote it as M(f). The well-known Mather-Yau Theorem [16] states
that: Let (V1,0) and (V2,0) be two isolated hypersurface singularities, M (V1) and M (V) be
the moduli algebras, then (V1,0) = (V3,0) <= M (V1) = M(V3). In 1983, Yau introduced the
Lie algebra of derivations of moduli algebra M (V), i.e., L(V) = Der(M(V'), M (V)). The finite
dimensional Lie algebra L(V') was called the Yau algebra ([14], [22]). This invariant L(V') plays
an important role in singularity theory [2I]. In this article, we will generalize the Yau algebra

and search for new invariants of a singularity from the higher derivations of its moduli algebra.

For a k-algebra R, from the definition of its n-th order derivations Der}(R) := Der} (R, R),
(see Definition , there is a natural filtration 0 = DerQ(R) C Der}(R) C --- C Der?(R) C
Der™(R) C --- on modules of higher derivations of R. Set Der{°(R) := |J,~o Der}(R), the
module of all higher derivations of R, and the associated graded ring is defined as GrDer(R) :=
R@®(®n>1Derf(R)/Der ! (R)). In fact, GrDer(R) is a commutative k-algebra (see section
).

In section [3, we show that for an Artinian k-algebra R, its higher derivations form a fi-
nite dimensional k-vector space Derp°(R), hence the associated graded k-algebra GrDer(R) is
Artinian. We establish this fact as the following theorem.

Theorem A. Let R be a local Artinian algebra, containing a subfield k isomorphic to its residue
field, then the graded derivation algebra GrDer(R) of R is Artinian. Moreover, the R-module
Der®(R) is free of rank dimgR — 1, and dimyGrDer(R) = (dimyR)?.

Let A, B be two k-algebras, as demonstrated in [3], we have Derj(A ® B) ~ Derj(A) ® B +
A® Der,ﬁ (B), now for the case of higher derivations, we propose an analogous conjecture.

Conjecture 1.1. Let A, B be two finitely generated k-algebras, then there is a canonical iso-
morphism of k-algebras
GrDer(A® B) ~ GrDer(A) ® GrDer(B).
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We find that when A, B are local Artinian k-algebras with k as their residue field, then this
conjecture holds.

Theorem B. Let A, B be two local Artinian k-algebras, each containing k as a subfield which is
isomorphic to their respective residue fields, then there is a canonical isomorphism of k-algebras

GrDer(A® B) ~ GrDer(A) ® GrDer(B).

In section [4] we focus on calculating higher derivations of the moduli algebras for certain
typical types of singularities, such as the simple hypersurface singularities (ADE singularities).
We propose the following Conjecture [1.2] and demonstrate its validity for binomial singularities

(see Theorem (4.14]).

Conjecture 1.2. Let (V(f),0) be an isolated hypersurface singularity defined by a weighted
homogeneous polynomial f, and let {e; : 1 < i < u(f)} be a monomial basis of the moduli
algebra M(f), where ex = 1 and Ce,,(yy is the socle (the definition can be seen in [8]) of M(f).
For each e;,2 < i < p(f), let d; be the monomial such that die; = e,y). Then the following
hold:

(1)There exists a higher derivation Do on M(f) that sends e,y to 1, and maps the other e;
to 0.

(2)The M (f)-module Der>(M(f)) is free of rank u(f)—1, generated by (Dy, d;),2 < i < p(f).
(The notation (Dy,d;) is defined in Proposition[2.7.)

Another problem we are interested in is when the weight type of a weighted homogeneous
hypersurface singularity (V(f),0) is fixed, what is the upper bound for the C-dimension of
Der™(M(V))/Der™ (M (V)) (we omit the subscript C). For the case of n = 1, Hussain-Yau-
Zuo had conjectured that dimL(V') attains the maximum in the case of Brieskorn singularity (see
the Conjecture 1.1 in [I2]). In this paper, we propose the following new inequality conjecture.

Conjecture 1.3. Let (V,0) be an isolated hypersurface singularity defined by a weighted homoge-
neous polynomial f(x1,...,x,) of weight type (w1, ...,wp;1),0 < w; < 1/2,Vi, then the following
inequality holds,
1 1 1
dimDer* (M Dert =Y M(V)) < hg(—, —, ..., —
mDert ((V))Dert (M (V) < (=),

where the function hy(ay,az, ...,an) denotes the dimension of Der®(M(V'))/Derk=Y(M (V")) for
the Brieskorn singularity (V',0) = ({z{* + 25? + -+ - + 2% = 0},0).

In section [5| we prove that the Conjecture holds for the case of k = 2 and (V,0) is a
binomial isolated singularity. The explicit expression for the function hy(aq, ag, ..., a,) is provided

in Definition 5.2

Theorem C. If (V,0) is an isolated hypersurface singularity defined by a binomial f(x1,z2) of
weight type (w1, wa; 1), then the following inequality holds:

dimDer?(M(V))/Der'(M(V)) < ho(—, —).

An important problem lies in the relationship between the higher derivations and geometry.
Let R be the affine ring of an algebraic variety V over a field k of characteristic zero, it has been
shown in [9] that if R is regular, then GrDer(R) can be generated by Deri(R) as a k-algebra.
And Y. Nakai (in [18]) proposed the following well-known conjecture.



ON HIGHER DERIVATIONS ASSOCIATED TO ISOLATED HYPERSURFACE SINGULARITIES 3

Nakai Conjecture: the regularity of R is equivalent to the condition that GrDer(R) can
be generated by Derj(R).

The Nakai Conjecture for a special case of the ring R = k[z1, ..., 2]/ (@127 +agx] +- - -4anz])
has been proved in [4]. In section[6] we extended this result to the case of f = @{" + 52+ - -+ zor
as follows.

Theorem D. Let k be a field of characteristic zero, then for R = k[x1, x2, ..., xp] /(2] +25*+- - -+
xdm),a; > 2, its derivation algebra GrDer(R) cannot be generated by its first order derivations
Der}(R) as a k-algebra.

Remark 1.4. We can replace the affine ring R in Nakai Conjecture by the moduli algebra
M(V) of an isolated singularity (V,0), and propose a contrapositive of a special case of Nakai
Conjecture. For the case of (V,0) a weighted homogeneous hypersurface singularity, we find that
this is obviously true if our Conjecture and the Yau Conjecture(see section [2|) hold, as the
higher derivation Dy in Conjecture is of negative weight(see Definition [2.1]).

At the end of the text, we provide the magma codes for computing higher derivations of the
moduli algebra associated with a weighted homogeneous isolated hypersurface singularity (see
section . The example code is used to compute the third order derivations of the moduli
algebra for the F7; singularity [I].

2. PRELIMINARIES

2.1. weighted homogeneous isolated hypersurface singularities.

Definition 2.1. Let & be a field, a polynomial f = 3 xn @2 € k[21, ..., 7] is called weighted
homogeneous of weight type (w1, ..., wy; d), if wia; +wee+- - - +wpay, = d holds for each multi-
index a = (@, ..., ap,) with a, # 0. We call w; the weight of z; and d the weighted degree of f,
denoted as wt(z;) = w; and wt(f) = d.

Notice that when the isolated hypersurface singularity (V(f
0

),0) is defined by a weighted
homogeneous polynomial f € Cx1, ..., 2], the ideal (f, 86711’ A %) of C{x1, ..., x, } is generated

by weighted homogeneous polynomials, hence M (V) = M(f) = C{x1,...,zn}/(, %, cee %)

has a graded structure, we call a higher derivation D (see Definition of M(f) to have weight
dif D: M(f)* — M(f)*t?, where M(f)* denotes the set of weight s elements of M(f).

An important class of weighted homogeneous isolated hypersurface singularities is fewnomial
singularities, defined as follows.

Definition 2.2. A weighted homogeneous polynomial f is called fewnomial if the number of
variables coincides with the number of the monomials, and an isolated hypersurface singularity
(V(f),0) is called a fewnomial singularity if it is defined by a fewnomial. Especially, when f is
in 2 variables, f (resp. (V(f),0)) is called a binomial (singularity); when f is in 3 variables, f
(resp. (V(f),0)) is called a trinomial (singularity).

Proposition 2.3. Let (V(f),0) be a fewnomial singularity with mult(f) > 3, then f is analyt-
ically equivalent to a linear combination of the following three types of series:

(1) ' + 252 + - + 2% n > 1;

(2) 2P wo + 25Pw3 + - 20 Ty + 28 0 > 2

(3) 2P wo + x3Px3 + - 2wy + 2Ty, > 2.

Proposition 2.4. Fach binomial singularity (V(f),0) is analytically equivalent to one of these
three cases: (A)f = z* +y°; (B)f = 2% +4°; (O)f = 2% + ¢ x.
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Proposition 2.5. Let (V(f),0) be a trinomial singularity with mult(f) > 3, then f(x1,z2,x3)
18 analytically equivalent to the following five types:

(1) 2%+ + 2

(2) x{*xo + x5%x3 + 25°;

(3) xxe + w5223 + 25° 21

(4) 28 + 2 + afia;

(5) x{txo + 25221 + 5.

2.2. higher derivations and higher differentials.
We review some basic concepts for n-th order derivations and n-th order Kahler differentials.
Let k be a field, R be a k-algebra, A be an R-module, and Homy (R, A) represents the k-linear

maps from R to A. There are two ways to define the derivations of order n, see [20].

The first way is to define inductively, Diff (R, A) = 0 for n < 0, and for n > 0, Diff}(R, A) =
{D € Homy(R,A) : [D,a] € Diff} (R, A),Ya € R}, it is easy to see that Diff)(R, A) = A.
We call elements in Diff}} (R, A) the n-th order differential operators on A, Diff°(R, A) :=
U,>o Diff (R, A). When R = A, Diff;/(R) := Diff}(R, R), sometimes the subscript k is omitted.

The second way is more precise as following.

Definition 2.6. ([I8]) D € Homy(R, A) is called an n-th order derivation of R into A over k if
for any n + 1 elements of R, denoted as ag, aq, ..., a,, we have

n

D(agay -+ an) = Z(_l)sﬂ Z @iy ai, Dlag---d;, - di, - an),

s=1 il<...<7:s
where the notation”means the corresponding term is omitted. We use Der}!(R, A) to denote the
set of n-th order derivations of R into A over k. And for n <0, Der}(R, A) = 0 by convention.

In other words, the definition means that [...[[D,a1],as], ..., a,] = 0,Va1,aq,...,a, € R holds
for D, see [18].

The relation between these two definitions is Der}(R, A) = {D € Diff}(R, A)|D(1) = 0}, and
there is an isomorphism Diff} (R, A) = A@ Der}}(R, A), which maps D to (D(1),D — D(1)g),
where D(1)g is the R-linear map r — r - D(1) of R into A. More details can be found in [20].

When A = R, we simply denote Der}(R, A) by Der(R). Since for a higher derivation D €
Derj(R) and a higher derivation D' e Der*(R), their compositions DD',D'D e Der™™(R),
and their Lie bracket [D, D] € Der™ ™ !(R), thus we obtain a graded k-algebra structure.
Denote GrDery(R) := R@(®n>1Derf(R)/Der '(R)), the multiplication on it is just the
composition of higher derivations, moreover, it is commutative.

Now we consider the case of R = k[z1,x9,...xs|/I, where k is a field of characteristic 0, and I
is an ideal (the case of R = k{x1,x9,...xs}/I for k a valued field of characteristic 0 is similar).
Let 9\ = (1/al) - 0%/0z™ be the derivation from k[x1,...,zs] to R, where a = (a1, ...,a5) is a
multi-index, al = ag!l-ag!- - - agl. It is easily known that Diffp° (k[z1, ..., 5], R) is a free R-module
generated by all o) s. The Proposition 2.10 in [20] characterizes the algorithm of the higher
derivations of R.

Proposition 2.7. ([20]) With notations as above, let D =3, ,, ca(D)(‘);(ta) € Diff} (k[z1, ...zs], R),
in which co(D) € R, then the following conditions are equivalent:

(1) D(I) =0 in R, i.e. D can be viewed in Diff}}(R).
(2) Y jaj<n Catp (D) (1) = 0 in R, for all f € N°.
(We use the notation (D,x?) to denote the higher differential operator > lal<n ca+g(D)09(ga)
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throughout the entire text, it has been shown in [20] that if we express 8 in the form xf =
Tiy Tiy *** Tipy,, then (D, zP) is just the higher differential operator [...[[D, xi,], Tiy], ..., Tijg]- )

(3) 2ja1<n ca+5(D)8;(ca)(I) =0 in R, for all B € N* satisfying |f] <n — 1.
(4) The assertion in (3) holds for a set of generators of I.

When R = k{x1,xa,...xs}/I for k a valuation field of characteristic 0, the equivalence of these
conditions still hold after replacing Diffy, (k[z1, ...xs], R) by Diff} (k{z1,...zs}, R).

An open problem for derivations was proposed by Halperin.

Halperin Conjecture([I1]): For a complete intersection algebra R = k[x1, ..., x,]/I, where
I is generated by weighted homogeneous polynomials of the same weight type, then there is no
first order derivations of R with negative weight.

One of the special cases of Halperin Conjecture is the Yau Conjecture.

Yau Conjecture([I7]): Let (V(f),0) be an isolated hypersurface singularity defined by a
weighted homogeneous polynomial f(z1,...,x,) of weight type (w1, ..., wy; d), assume d > 2w; >
2wy > -+ > 2w, without loss of generality, then L(V) := Der!(M(V)) is non-negatively graded.

The Yau Conjecture remains an open problem, with only low-dimensional cases having been
proved, primarily through explicit calculations. Desipite this, there have also been many pro-
gresses in these types of problems (see [5],[6],[17]). And from the examples we calculate in section
[], the Halperin Conjecture will fail if we enlarge the first order derivations to higher derivations.

Next we introduce another object which can be viewed as the dual of the module of n-th
order derivations, that is the n-th order Kahler differentials.

Definition 2.8. Let k be a field, R be a k-algebra, an R-module ng/)k together with a canonical

k-linear map d' : R — Qg/)k is called the n-th order Kdahler differentials of R over k if it satisfies
the following universal property:

For an arbitrary R-module A, and an n-th order derivation D € Der}(R, A), there exists a

unique R-linear homomorphism A : le/)k — A, such that D = h o d’.

Remark 2.9. The above definition is equivalent to say that the functor Derj(R,—) from
the category of R-modules to the category of sets is representable, and the canonical map

dp: R — Qg/)k is the universal element.

We give more concrete descriptions for the n-th order Kahler differentials, they are similar
to the case of the first order Kahler differentials.

Theorem 2.10. ([18]) Let R be a k-algebra, denote Ir as the kernel of the multiplication map
from R®y R to R, giving the structure of R-module to R ®y R by multiplying on the left. Then
the n-th order Kahler differentials Qg/)k are isomorphic to IR/I}%H, and the canonical map is
given by d(r) = (1@ 7 —r®1) + Iptt. Moreover, d(r) is a higher derivation of order n, we

call it the canonical derivation of R in Qg/)k

At the end of this subsection, we briefly introduce the relation between the derivations,
differentials, and the smoothness.

Theorem 2.11. ([I8]) Let k be a field, R be a k-algebra. I C R be an ideal, and S = R/I,

define the k-linear map p : I/I"F! — Qgg/)k ®r S as p(F) = di(r) ® 1, and denote N to be the

S-module generated by the image of p. Then one has the following exact sequence:

O—>N—>Qg}k®35—>9fg")k—>0.
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When R = k[z1,x2, ..., x5]/I for k a field of characteristic 0 (resp. R = k{x1, 2, ...,x5}/I for
k a valuation field of characteristic 0), this theorem provides an idea to give a free resolution
for R. Remark B = k[x1,x9,...,xs] (resp. B = k{z1,x2,...,25}), I = (f1, f2, ..., fr). As for any
a,b € B, one holds the identity in B ®j B:

I@ab—ab®1=(1®a—a®1)(10b-b®1)+a(l®b-0®1)+b1l®a—-a®1),
this implies that d(ab) = d';(a)d%(b) + ad}(b) + bd';(a),Va,b € B.

Let h=>""_,gifi € I, then p(h) = >, d%(g:f;) ® 1 = >i(dp(g0)d(fi) © 1+ gi(dp(fi) @1) +
fildh(gi) ©1)) = X, ((dB(g0)dR(fi) ® L+ gi(dE(fi) @ 1)). Remark Ff = (d(2)) d%(f:), B €
N*/1 < ¢ < r. An easy calculation tells that the module N in the above Theorem [2.11] is
generated by the set {Fé ®1 [|8] < n—1} as an R-module.

Lemma 2.12. With notations as above, for f € N° |f| <n —1,1<1i<r, one has

. 1 80‘*6 i n o

acN?
1<|a|<n
. o <1+ 8],
and we make a convention that (a_lﬁ)! 883:&9;1) = 0, whenever ¢ «; < B; for some 1,
a=p.
Proof. A direct calculation, omitted. O

s+n71)
i S
— 1, whose rows are the vectors generated by the coefficients of F é’s, as presented

Definition 2.13. The n-th order Jacobian matrix Jacy,(f1, f2, ..., fr) is a matrix of size 7‘(
: +
times (*1")
in above lemma.

Remark 2.14. When I = (f) is generated by a single polynomial, then the n-th order Jacobian
matrix Jac,(f) is related to the higher Nash blow up (ref. [7]) of the hypersurface V' (f). And
Hussain-Ma-Yau-Zuo raised new invariants of singularities from the n-th Jacobian matrix (see
[13]).

Generalized Jacobian criterion also holds as following.

Theorem 2.15. ([19]) Let f € Clz1,z2,...,xs] be a reduced non-constant polynomial, p € V(f).
Then p is non-singular if and only if rank(Jac,(f))|p :("+S_1).

Theorem 2.16. ([10] Chapter II-8) Let R be a local ring containing a field k isomorphic to its
residue field. Assume further more that k is perfect and R is a localization of a finitely generated
k-algebra. Then Qg}k 15 a free module of rank dimR if and only if R is a regular local ring.

The above Theorem has also been generalized to the n-th order Kdahler differentials for
the hypersurface case.

Theorem 2.17. ([19]) Let A = k[z1, z2,...,xs5]/(f), [ is irreducible, and R = Ay be the local-
ization of A at a mazximal ideal m of A. Then ng/)k s a free module of rank ("if;l) if and only
if R is a reqular local ring.

Geometrically speaking, the locally freeness of the Kahler differentials implies the smooth-
ness. The Zariski-Lipman Conjecture makes the prediction for the module of derivations that it
has the similar property [15].

Zariski-Lipman Conjecture: when R is the affine ring of an algebraic variety V over a
characteristic zero field k, or R is a local analytic ring, and if Der}(R) is free, then R is regular.
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3. PROOF OF MAIN THEOREM [A] AND THEOREM [Bl

The fact in Theorem [2.10] implies the main Theorem [A] now we begin to prove it.

Proof. (of Theorem [A]) Denote m to be the unique maximal ideal of R, R/m ~ k. Then R®j, R is
also a local Artinian algebra with the unique maximal ideal m® R+ R®m, so [r C m@ R+ R®m.
Since R is Artinian, m is nilpotent, write m”™ = 0, then (m ® R + R ® m)?"~! = 0, this implies
2n—1
-l =o.
Therefore, when m > 2n — 2,

Derf(R) ~ Homp(Q)), R) ~ Homp(Ir/ I3 ™", R) ~ Homp(Ig, R),

and as this isomorphism is also compatible with the inclusion Der®(R) C Der;"*!(R), we have
Deri™Y(R)/Der*(R) = 0 for m > 2n—2. So GrDer(R) is a finite dimensional k-vector space,
it is Artinian as a k-algebra.

Next we calculate the k-dimension of GrDerp(R). By the definition of Iy, there is an exact
sequence of R-modules:

0—=Igp— R R—R—0.

As R is a free R-module, hence projective, this exact sequence splits. So Iy is a free R-module of
rank dimyR—1, and Derg°(R) ~ Hompg(IRg, R) is also a free R-module of rank dim;R—1. Thus
dimyGrDery(R) = dimy, Diff°(R) = dimyR + dimyDery®(R) = dimpR + (dimyR) - (dimyR —
1) = (dimyR)?. O

To prove the main Theorem [B| we propose the following two lemmas to give the inclusion on
one side.

Lemma 3.1. Let A, B be two finitely generated k-algebras, Dy € Difft (A), Dy € Diffi(B), then
as a k-linear endomorphism of A® B, D1 ® Dy induces an (i + j)-th order differential operator
on A® B.

Proof. As A ® Deri(B) C Der(A ® B) C Diff;:j(A ® B), Deri(A) ® B C Deri(A® B) C
Diﬂ'?jj(A ® B) from Definition we may assume D; € Der}(A) and D, € Deri(B) without
loss of generality.

Write A = k[z1, ...,2,]/I, B = k[y1, ...,ys]/J, D1 is induced from D; € Deri (k[z1, ..., z,], A),
D, is induced from Dy € Deri(k[yh...,ys],B), then A ® B ~ k[x1,....,xr, Y1, ..., Ys)/ (L, J), and
D1 ® Dy is induced from Dy ® Dy € Der?j(k[xl, ey Ty Yy oony Ys)y A® B). Now for each monomial
Y8 |(a, B)| = || +|B| < i+j—1, (D1® Dy, 2y?) = (D1, 2*)®(Dy,y"), and from Proposition
(Dy,2°)Y(I) = 0 in A, (Ds,4%)(J) = 0 in B, therefore (Dy ® Dy, 2%y®)(I & ky1, ..., ys] +
klz1, ...z, ]®J) =0in A® B, and D1 ® Dy is an (i + j)-th order derivation of A ® B. O

Lemma 3.2. For two finitely generated k-algebras A, B, there is a canonical inclusion
D Diff (A) Diff] (B) _, _Diff{(A® B)
piffV(4)  DitV " V(B)  Dif" V(A B)

,Vn > 0.
i+j=n

Proof. We do induction on n, the cases of n = 0,1 have been already known.
Assume this inclusion holds for the case of n — 1, consider the case of n, n > 2. Let

- - - . . — Diffi (A) pift" = (B) .
t f the right hand side, wh ; . k d 1
(1o, 1, ..., ¥y) maps to zero of the right hand side, where 1); € ot D) © D (g and ; is

a preimage of it in Diff} (A4) ® Diff}~*(B). Write A = k[v1,...,x,]/I, B = k[y1, ..., ys]/J, then for
any a € {z1,..., 2}, (X hi,a®1) € Diff" P (A® B), and (¢;,a ® 1) € Diffi(A) @ Diff?*(B)
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pif'"V(4) _ Dif"")(B)
pift'"?(4) ~ Di" " (B)’
Diffi (4) _ Diff" " (B)
Dt~ (4) ~ Dit" " (B)
t such that 1; # 0, express 1y = > Ca,rg&(go‘)@;ﬁ), Cuop € A® B, then there exists multi-index
a, B, such that Cy 3 # 0in A® B, and || = 1, || = n—i. Without loss of generality, let a1 # 0,
Dt (4) D" (B)
Dift "2 (4) ~ Dt (B)
Therefore the inclusion holds for the case of n, we have finished the proof. U

for each i. By the induction hypothesis, we have (¢;,a ® 1) is zero in

Similarly for each b € {y1,y2, ..., ys}, (¥, 1®b) is zero in . If there exists

then (¢, 27 ® 1) is not equal to zero in , a contradiction!

Proof. (of Theorem [B]) Lemma and tell that the inclusion O holds on each degree of the
graded derivation rings. And Theorem [A| implies that dim;GrDer(A ® B) = (dim;A ® B)? =
(dimyA)? - (dimyB)? = dimy,GrDer(A) - dim,GrDer(B) = dimy(GrDer(A) ® GrDer(B)), they
have the same dimension as k-vector spaces, hence must be isomorphic. O

Remark 3.3. Now we know that Diff}°(R) is free R-module of rank dimy R and has k-dimension
(dimiR)%. In other words, each k-linear endomorphism of R can be realized as a higher differ-
ential operator of R. However, we must notice that GrDeri(R) is not a free R-module.

Corollary 3.4. Let (V(f),0) be an isolated hypersurface singularity defined by a weighted ho-
mogeneous polynomial f, then the graded derivation algebra GrDer(M(f)) of its moduli al-
gebra M(f) = C{x}/(f,J(f)) is an Artinian C-algebra, whose dimension is u(f)%, where
pu(f) = dimcM(f) is the Milnor number (equal to the Tjurina number) of (V(f),0).

4. SOME EXAMPLES

In this section, we list the following two conjectures, and verify them for some concrete
examples.

Conjecture 4.1. Let (V,0) be an isolated hypersurface singularity defined by a weighted ho-
mogeneous polynomial f, then the highest degree of GrDer(M (V) is of one dimensional, i.e.
there exists an integral n, such that dimGrDer(M(V)), =1 and GrDer(M(V))my, = 0,Ym > n,
where GrDer(M(V)); := Der(M(V))/Deri=Y(M(V)) fori > 0 and GrDer(M(V))o := M(V).

Conjecture 4.2. Let (V,0) be an isolated hypersurface singularity defined by a weighted ho-
mogeneous polynomial f, then elements in Der®> (M (V)) can be discussed regarding their ho-
mogeneousness (see the paragraph below Definition , we claim that the amount of higher
derivations of weight k is the same as the amount of higher derivations of weight —k.

4.1. The simple hypersurface singularities case.

We know that simple hypersurface singularities have classifications with good form, which
are called the ADE singularities (see [I]). Since ADE singularities are defined by weighted
homogeneous polynomials, the weight type of the polynomial f induces a weighted graded
structure on its moduli algebra M(f), and further on the commutative ring GrDer(M(f)).
Let GrDer(M(f))® be the set of weight s elements in GrDer(M(f)), we will also compute the
Hilbert-Poincare series P(t) := ) dimGrDer(M(f))® - t° for them.

4.1.1. The A} case.
First, as an example, we present the calculation of the higher derivations of the moduli algebra

associated with the As singularity, the algorithm employed is based on Proposition
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Example 4.3. The Aj singularity is the isolated hypersurface singularity (V(f),0) defined by
f=a}+x3+ -+ 22, whose moduli algebra M (V) ~ C{x1}/(x3) is a three dimensional vector
space, with a basis 1, z1,22. From Proposition each D € Der™(M(V)) must have the form
D=3%" ci&g?, ¢i € M(V), where &E«? = 1/i!d.,, we will continue this notation in the whole
text. Now we treat for each m separately.

D = ¢10,, induces a first order derivation on M (V) if and only if D(x3) = 3c12? equal
to 0 in M(V), thus ¢; = Mx1 + Aox?, A1, A2 € C, and Der'(M(V)) = C(x10s,,220,,); D =
€10z, + 0283(621) induces a second order derivation on M(V)) if and only if D(x3) = 3ci2? +
3cazy = 0in M (V) and (D, z1)(23) = c123 + 3cez? = 0 in M(V), thus (c1,c2) = A (1, —21) +

A2(z1,0) +A3(23,0) +24(0,22), \; € C, and Der?(M(V)) = C(0s, —a:l&g), a:laxl,x%am,x%aé?)).

Similarly, D = ¢10,, + 028§21) + 033§?) € Der®(M(V)) if and only if D(z3) = 3c12? + 3camy +
c3 = 0in M(V), (D,z1)(23) = c123 + 3c22? + 3czry = 0in M (V) and (D, z?)(23) = cox? +
3cgz? = 0in M(V), thus (c1, ¢, c3) = A1 (1,0, —32%) + Ao(1, —21,0) + A3(x1, 0,0) + Mg (23,0, 0) +
A5(0,22,0), \; € C, and Der3(M(V)) = C(dy, — 3220V, 0,, — 2,08, 210,,, 2205, , 2202). D =
€10z, + 028;5«21) + 0383(631’) + 6489(;%) € Der*(M(V)) if and only if D(x3) = 3¢122 + 3cox1 +c3 = 0 in
M(V), (D, x1)(23) = c1234+3c222 +3cgz1+cq = 0in M(V), (D, 23)(23) = cox? +3c322 +3cyz1 =
0in M(V) and (D, x3)(z3) = c323 + 3cs2? = 0 in M(V), solving these four equations in M (V),
we obtain (c1,ca,c3,¢4) = A1(1,0,—32%,0) + Aa(1, —21,0,0) + A3(21,0,0,0) + \y(z%,0,0,0) +
A5(0,1, =31, 622) 4+ X6(0,22,0,0), \; € C, and Der*(M(V)) = (C(&?l) - 3x189(;?) —1—633%69(;?, O, —
32208Y 0y, — 2102 210,,, 220, , 220).

Now we have calculated from the first to the 4-th order derivations of M (V'), especially,
we obtain dimDer*(M (V) = 6 = 3 x 2 = dimM (V) - (dimM (V) — 1). Then from Theorem
dimDer*(M(V)) = dimDer>®(M(V)), we have Der™(M(V)) = Der*(M(V)),Vm > 4.
Therefore, we obtain the C-basis for each degree of GrDer(M(V)).

At last, we choose the weights by wt(z1) = 1, wt(z;) = 2,V2 < i < n, (V(f),0) is weighted
homogeneous, then the Hilbert-Poincare series for GrDer(M(V)) is P(t) = % + 2 + 342t + .

From the above concrete example, we find that to calculate higher derivations of the moduli
algebra M (V') of an isolated singularity (V,0), just by applying Proposition to translate the
conditions to several equations in M (V'), and reduced to solving linear equations as M (V) is
finite dimensional C-vector space. However this workload is too heavy when the singularity is
more complex, so we use the magma programming to help us calculate some examples. Here we
list some calculation results for A singularity in the following Table

Table 1: higher derivations of moduli algebras of Aj singu-

larities
symbol | moduli algebra | each positive degree parts of GrDer(M(V))
M(V)
Ay MWV)=C GrDer(M(V))y, =0 for m >0
M(V) = GrDer(M(V))1 = C(z10y,),
Ay C 9 GrDer(M(V))s = C(z10,, — 22102))
{x1}/(2) GrDer(M(V))m = 0 for m > 2.
GrDer(M(V))1 = C(210z,,270z,),
M(V) = GrDer(M(V))z = C(0s, — xlaé?; 230,
As Clon} /() GrDer(M(V))3 = C(8y, — 32205,
GrDer(M(V))s = C(05Y — 32108 + 6220.)),




10 ZIDA XIAO, STEPHEN S.-T. YAU, AND HUAIQING ZUO

GrDer(M(V))y, =0 for m > 4
GrDer(M(V))1 = C{x10y,, 230z, , 30, ),
GrDer(M(V))z = C(ds, — 22108, 2305, 2301),

M(V) = GrDer(M(V))s = C(0,, —afoly atol), )

Aa Cla}/(2) GrDer(M(V))s = C(0y, — 423057, 08 — 20108 + 2420Y),

GrDer(M(V))s = C(05” — 62205 + 20230Y),
GrDer(M(V))s = C(0Y — 42,85 + 102205 — 202305y,
GrDer(M(V))m = 0 for m > 6.

Proposition 4.4. For general k > 2, the Ay singularity defined by f = xlf+1 + 234 -+ 22

whose moduli algebra M(f) = C{z}/(z*) has the following properties: "
(1) dimcGrDer(M(f)) = k2.
(2) Der™(M(f))/Der™ Y(M(f)) =0 for all m > 2k — 2.
(3) dimDer?=2(M(f))/Der**=3(M(f)) = 1, moreover, Der?=2(M(f))/Der**=3(M(f)) is
spanned by a1 (lf)x&gk) + (k;rl)xzag(gkﬂ) — et (—1)"3_1(Qkk:12):z:k_18§2k_2).

Before proving this proposition, we give the following lemma about a combinatorial identity.

Lemma 4.5. Let n > 2 be an integer, then for any 0 < s <n — 1, we have:

() () () e ()2

Proof. This identity has such a combinatorial explanation.

The left hand side can be viewed as the coefficient of the term 2"~ ! in the polynomial

S o (M (@ — 1)*=1=s+)_ On the other hand 37 ( (7)(z — 1)1+ = ((z — 1) + 1)"(z —
1)~ 175 = g"(z — 1)" 179, the coefficient of the term 2"~ ! is zero. Hence the identity has been

proved. [l

Now we begin to prove the proposition.

Proof. (of Proposition

We know that M(f)®c M(f) ~ C{x,y}/(z*,y¥), and the multiplication from M (f)®c M (f)
to M(f) can be viewed as the C-algebra homomorphism ¢ : C{xz,y}/(z*,y*) — C{t}/(t*), in
which ¢(z) = t,¢(y) = t. Then we can compute the kernel of ¢, which is denoted as Ips(y).
It is the C-vector space spanned by {ziy/~! —2i=lyJ : 1 < 4,5 < k—1,i+j < k} and
{2y :1 <4, <k—1,i+j > k}. Moreover, it is a free M(f)-module of rank k — 1, which is
generated by {zy/ ! -y 1< j<k—1}

(1) and (2) are implied from the proof of Theorem More precisely, as the unique max-
imal ideal of M(f) is (x), and (2)* = 0 in M(f). Then Der™(M(f) = Der?*=2(M(f))
from Theorem and Der*=2(M(f)) = Homp(p)(Ina(p) M(f)) = M(f)** as M(f)-
module. Hence dimDer?*=2(M(f)) = (k — 1)dimM (f) = (k — 1)k, and dimcGrDer(M(f)) =
dimM (f) + dimDer?*~2(M(f)) = k2.

For (3), define D = Og(gk_l) — (lf)x&gk) + (’“;1):8856’““) — e (—1)FT (Qkk:f) :L‘k_133(32k_2), from
Proposition we know that D € Der?*=2(M(f)) if and only if (D, z%)(2*) is equal to 0 in
M(f) for 0 < s <2k —3.
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When 0 < s < k—2, (D, %) = 8L (—1)igd (1901754 g0 (D, 1) (a%) = S F L (—1)"-

(R 1+ (k_llis+i)a:s+1. As1<k—1-s<k-1, 5 (-1 ("" 1 (,_ lk o+i) = 0 from the above
lemma, (D, %) (z¥) = 0.

When k£ —1< s <2k—-3, (D,z*) = Zf;sl+1_k(—1)ixi (k_g+i)8g(;k7178+i), and we can see that
(D, z®)(x*) € («*), it must be 0 in M (f).

Now we have checked that D is a derivation of order 2k — 2.

Since D(z*~') = 1 and D(z') = 0,¥0 < i < k — 2. Then for each 0 < j < k: — 2,
(D, 27)(z*177) = 1 and (D, 27)(2%) = 0,V¥0 <4 < k—2—j. Thus D, (D, z), (D, 2?),..., (D, 2%2)
are M (f)-linearly independent in Der?*=2(M(f)), combining with dimDer?*=2(M ( ) = (

D dimM (f) = (k — 1)k we have proved, Der?*=2(M(f)) is just the free M(f)-module generated
by D, (D, z),(D,x?),...,(D,z%"2), (3) is proved. O

Proposition 4.6. For general k > 2, if we set wt(x1) = 1, and wt(x;) = %,2 <i<mn
in the polynomial f = wkH + JUQ + o+ x% Then the Hilbert series for GrDer(M(f)) is
P(t) = t;@%l+tk%+-‘-+k+(kz—1)t+-~+t’f—1.

Proof. Denote D = 8(k R ( )x&gk)—i—(k;l)m?@ék“)—- . -+(—1)k*1(2kk:12)xk*183(c%_2) as a higher
derivation of M (f) = C{z}/(z"*) from the proof of Proposition we know that Der® (M (f)) is
the free M (f)-module of rank k—1 generated by D, (D, x), (D, xz?), ..., (D, 2*~2), where (D, z°) =
SE (1)t () g < s < k- 2.

Since (D,x®) is a derivation of weight —(k — 1) + s and z7(D, z°) is a derivation of weight
—(k—1)+s+jfor 0 <j<k—1 We know that the dimension of weight i derivations is
the cardinality of the set {(7,5) |0 <s<k—-20<j<k—-1,—(k—1)+ s+ j =i}, which
equals to k + i when —(k — 1) <4 <0, and equals to k — 1 — ¢ when 1 < ¢ < (k —1). Together
with the basis {1,z,22,...,2""1} of M(f) has weights 0,1,2, ..., (k — 1), the Hilbert series for
GrDer(M(f))is P(t) = g + oz + -+ h+ (k= 1)t + -+ tF 1, O

4.1.2. The Dy, case.
For Dy, singularities, we still present some calculation result by magma programming in the
following Table [2] first.

Table 2: higher derivations of moduli algebras of Dj singu-
larities

symbol | moduli algebra | each positive degree parts of GrDer(M (V)

123000,,, 1220,,08) — 22,0 — 1a20(Y + 10, — 1250,,0,,),

L0200, — 2230808 + 210 + 22301,
GrDer(M(V))y, = 0 for m > 4.

M(V)
GrDer(M(V))1 = C{x90y, + 210z, , 305y, 1102, + %xgﬁml,m%é?xl),
GrDer(M(V))2 = C(Op, — 7202 — 210500y — 220087 000,, —
M) 222009 23089 — 1030 2102 — 10,, + 12904, 0y + 1210 210, +
Dy | Clzy,z2}/(323+ Jo1010.), (2) 2 n(3) L)
2 GrDer(M(V))s - Cledl) — 32208 — 100 +

GrDer(M(V))s = C(0 — 32,0 + 62 ga§4> — 210,080 — 1) +

GrDer(M(V)), = C(x205, + %xlaml,m%%wx%@mz
%anxlax%ampx%axl)?

_l’_
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GrDer(M(V))y =  Clwady, + 2a20,010,, — 22050, —
1 (2) ,29(2) 2 29(2) 1,.29(2) 292 1
12205, , 25027, 0202, — 504, 0y, 150y, + 321027, 270z, — 705, +
1290, Oy + $2100),
GrDer(M(V))s = C(a208? + 32308, 2208 — 2308 0,,, 2305 +
1220,,02 — 1200 + 12209 0, — 30,02 + 62205 — 210,04, +
27(2) 1 o3
M(V) — xlam (912 + ngam >, ,
Ds Cla1, 0} /(42 + | GrDer(M(V))y = Cla18) — 32308 — 3230, 2208 — 323050 —
22, 212) Lood® + 1220090, 0100 — 220,02 — 102 + 12,000,, —
3030508 + Jm10f) - a%al)),
GrDer(M(V))s = C(0S) — 220800, + 2305707 — 32108 + 622057 +
5,240
55626901 >7
GrDer(M(V)) = c(o®? - 32508 —51—63:%8%) - 105,05 + 230800 —
198 4 120080, + 2108) — 323080 — 3a301Y),
GrDer(M(V))y, = 0 for m > 6.
GrDer(M(V)), = C(x205, + %xlﬁml,m%&mﬁ@mz +
%anacl ) x%ax1 ) x%aan ) 1':1583;1%
GrDer(M(V): = Cladon, — o100, — kel a3l +
éx%@%i, x?@%i - gaél 1090y, 0y + 152108, 200y, — 230, Oy 210y —
2.2 2 3
§xlaﬂﬁ1 73728& ,1’18901 >7
GrDer(M(V))3 = C(210p, — 2205,05y + 23050, + 120, 0,, —
xzaxl(%Q + gaﬁa&? — 2102 + 12200 2,02 — 22000,,,2207 —
3..3 2
§xlaﬂﬁ1 7x28w1 >7
GrDer(M(V))y = C(8y, — 22052 — 210y, 0, + 2202 0,, — 230V 0, —
M(V) = LoV 22082 — 230,02 — 10 + Ly 0,, — 2030202 + L 108 —
Ds | Cla, wz)}/ (Bri+ | 13200 210 — 2220 + 22301, 2,08 — 23010, 230 + Sa30lY)),
XLy, 12

GrDer(M(V))s = (C(ng)g) — 356‘%83(;2) — %xzag(ﬁ) + %xgaa(ff)@m,@g) -
xgﬁg(;l();))@ + xgaﬁ’a;? — %xlﬁg) + 336%8;5;4{) — %xi’&(g ,x%&(g) — 435?8&4{) —
2.%'%(9r1 >7

GrDer(M(V))s = Cla1052) —230,, 0% +2303 052 — 18 4+ L1008 0., +
32,08 — 2208 + 230\, 2,08 — 42207 + 10230 + 42309y,
GrDe'E“G()M(V)h(?:) C(0 — 200 0,, + 220002 — 42108} + 102200 —
202305, — Tx30:),

GrDer(M(V))s = <c<a§£)4— 322080 + fxgga;‘;) — 210,02 1 22002 —
230 (a%g — 198 4+ L2y0()0,, - 20308008 + 108 — 30308 + T30l +
14,258 )

5 L9201 /s

GrDer(M(V))m = 0 for m > 8.

Lemma 4.7. Fork > 4, denote D = 81(,2)—3y8@(,3)+6y282(,4)—ﬁ(zgg(—l)i(k_?ﬁ)x"aék_%i))—i—

k—3
i1

(_1)1;3;13:(0%')3?52) + ﬁyaﬁ?‘”a@, + ((=1)F1 — 1)%3/283(5’“_2)83(/2), we claim that D induces

a (2k — 4)-th order derivation on the C-algebra C{z,y}/((k — 1)a*=2 + 42, xy).
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Proof. We directly check it by using Proposition saying that (D, z'y?)((k — 1)zF=2 + 4?),

(D, z'y?) (xy) both equal to 0 in C{z,y}/((k—1)z*"2+y?, zy), for any i,j > 0. It is easy to see
that (D, z'y’) = 0 when j > 4 or i > 2k — 4, we only need to treat the case for i < 2k —4,j < 3.
To simplify the notations, remark f; = (k: —1)z*=2 492, fo = zy, and the following calculations
are all in the algebra C{z,y}/((k — 1)2*=2 + ¢, zy).
W (f

D)= 0 () =1-1=0; D(f2) =0.

H(CS ) (ol () +
T)x + (=1)%2?, similar to the trick in
k—2

(1) When i =35 =0, D(f1) =

(2) When1<i<k:—3j—0 (D, )(fl) -
(D)0 (1) = = Yhof > (’“ 20y
Lemma 3.1, we know that Z ol (k 2“) (k 9 JHn) is the coeflicient of the term z
in ((z — 1)+ 1) 2(x — 1)}, which is (=1), thus (D, 2%)(f1) = 0. And (D, 2% (f2) = 0 if
i <k—3,(D,a"3)(fo) = —250.(f2) + k—ilyﬁxﬁy(fg) =0.

(3) Wheni = k—2,j =0, (D,zF2) =
l)ﬁyzﬁg(f), then <D,xk*2>(f1) =
(D = Dhyy? = ()

1
2
i+

)= i s (-1 (a0 phpyd, (-1
= i = D () ()R R 27
("2 + L3y?) = 0, and <D T 2)(f) = 0.

(4) Whenk—1 < i <2k—4,j =0, (D, 2!y = -5 302 (- (’“ 2+’) o2t then
(D,a')(f1) = =X ko (D7 (7 (537 0)at = 0 as @bt = 0 in g/ ((k -

1)31:"“72 + yz,my), and (D, x’>(f2) = 0.
(5) When i = 0,5 = 1, (D,y) = 8, — 3ydy” + 64205 + S F=3(—1)yraral”a, + Lyot ) +
(=D)F1 = 1) 25920820, then (D, y)(f1) =2y —3y+y =0, (D,y)(fo) =z —x = 0.
2

(6) When 1 < i < k—3,5 =1, (D, a'y) = Y F23(—1)r2700 0, + yolF > 4 ((—1)F1 -
1)y 0700, then (D, ') (1) = 0. And (D, ') (f2) = (~1)fa1 (-1 Hat! =0
for i < k—3, (D, 2" 3y)(fo) = (1) 322+ L5 1@/ + (=DM = 1) Ay = 0.

(7) When k—2 < < 2k—4,j = 1, then (D, 2'y) = 2ry+((—1)F! )kllyza ifi =k—-2,
and vanishes if i > k — 2. (D, 2*"2y)(f1) = 0, (D, xk 200(f2) =

(8) When i = 0,j = 2, (D,y?) = 1 — 3yd, + 6y20" + S F3(— )r rol”) 4 ((—1)k1 —
Dky?0l ™, then (D,y?)(f1) = fi — 642 + 6y + (k — 1) Thzi(=1)7 (¥ %)ah2 +
(=D =1)y? = =(k=1)(1+(=1)*2)a* 2+ ((-1)* ' = 1)y* = 0, and (D, 3?)(f2) = 0.

(9) When i > 1,5 = 2, (D,2'y*)(f1) = 0,(D,z'y*)(f2) = 0.

The rest case of j = 3,4 is trivial, we omit them.

Therefore, we have checked that D induces a (2k — 4)-th order derivation on C{x,y}/((k —
ah=2 4+ 42 2y). O

Proposition 4.8. For general k > 4, the Dy, singularity deﬁned by f = xl +x1x2+x3—|— A+,
whose moduli algebra M (f) ~ C{z,y}/((k — 1)2*=2 + y%,2y) has the following properties:

(1) dimcGrDer(M(f)) = k2.

(2) Der™(M(f))/Der™ Y(M(f)) =0 for all m > 2k — 4.

(8) dimDer?=4(M(f))/Der**=3(M(f)) = 1, moreover, Der?*=4(M(f))/Der?*=5(M(f)) is
spanned by 652) - 3y6?§3) + 6y28§, ) k—il(ZL_g(—l)i(#?H) aci&(gk_%i)) + Zf:_f(—l)ixi&(j)ag(f) +
Pyt V0, + (DR = 1) yral o).

Proof. We know that M (f) ~ C{x,y}/((k—1)z*"2+y?, xy) is a k-dimensional vector space with

1,x,2%,...,2" 2,y as a basis, so M(f) @c M(f) ~ C{z1,z2,y1,92}/((k — 1)56?72 + 92, 2191, (k —
Dak=2492 2915). And the multiplication map from M (f)®c M (f) to M(f) can be viewed as the
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C-algebra homomorphism ¢ : C{z1, x2,y1,y2}/((k — )22 447, 2191, (k — 1)ab 2 + 42, zoy0) —
Cla,y}/((k — 1)2""2 + 2, ay), in which ¢(z1) = ¢(x2) = =, d(y1) = d(y2) = y.

Now we can compute Ijs(y), which is denoted as the kernel of ¢. It is the C-vector space
spanned by y1 — y, 2iye (1 < i <k—2), oy (1<) <k—2), alaf ' —ai 2 1<ij <
k—2i4+j<k-1), (k—1)2"2 4 yjyo and zia} (0<i,j <k—2,i+j >k —1). Moreover, it
is a free M(f)-module of rank k — 1, which is generated by y; — ya, :clac%_l — mJQ (1<j<k-2).
Then (1) and (2) can be directly implied from the proof of Theorem [A] we omit them.

For (3), denote D := 8" — 3ydy") + 63205 — A5 (SF2(—1)f (2 aialf )

+ Zf;f’(—l)ixiag(ci)af) + ﬁyag(ckd)@y + ((—=1)k1 — 1)ﬁy28§k72)8§,2), from the above Lemma
D is a (2k — 4)-th order derivation on M(f). Moreover, we see that the higher deriva-
tions D, (D, x),(D,z?),...,(D,z*=3),(D,y) are M(f)-linearly independent in Der>(M(f)) =
Der?*=4(M(f)). Together with the fact in Theorem [Al Der>(M(f)) is a free M (f)-module of
rank k—1, generated by these k—1 higher derivations. Therefore, Der?=4(M (f))/Der®*=>(M(f))
is one dimensional, spanned by the higher derivation D. O

Proposition 4.9. For the Dy, singularity defined by f = :L‘]f_l—i-xlx%—i-a:%—i-‘ 422, the following
holds for the Hilbert series P(t) of GrDer(M(f)):

(1)If k is odd and we set wt(x1) = 2,wt(x2) = k — 2, wt(x;) = k — 1,V3 < ¢ < n, then the
Hilbert series is P(t) = k + Zf;f(k;%fr + 1_(t:1)r + (1= (=D)") " + (b —1—7)t?");

(2)If k is even and we set wt(v1) = 1, wt(z2) = 52, wt(x;) = £51,¥3 < i < n, then the Hilbert

series is P(t) = k+2+ Y0P/ k=l2r L koan 2 4 opr L (p_9p )2l 4 (k— 1 — 20)t%);

r=1

Proof. Just deduce from the fact that Der®(M(f)) is the free M(f)-module generated by
D, (D, x1),(D,x?), ..., <D,:U’f_3> and (D, z3), D is defined in Lemma (identify xq,zo with
x,y), we omit the details. O

4.1.3. The Fg, E7, Eg case.

The Eg singularity is the isolated hypersurface singularity defined by f = 23 +a3+z3+- - -+22,
we see that its moduli algebra is the tensor product of those of Ay and As, then GrDer(M(f)) ~
GrDer(C{z}/(2?))@GrDer(C{z}/(z*)) from Theorem[B] and the dimensions of each degrees of
GrDer(M(f)) are 6,7,9,6,5,2,1. If we choose wt(x1) = 4, wt(xz) = 3, and wt(z;) = 6,V3 <i <mn,
then the Hilbert series for GrDer(M(f)) is P(t) = t%O + t% + t% + t% + ;% + t% +246+2t+
2+ 413 + 3t1 + 210 4 2¢7 + ¢10.

The E7 singularity is the isolated hypersurface singularity defined by f = x3+z123+23+-- -+
22, by means of programming, we calculate the dimensions of each degrees of GrDer(M(f)) are
7,8,10,8,7,4,3,1,1. If we choose wt(x1) = 3, wt(xz) = 2, and wt(x;) = 9/2,V3 < i < n, then the
Hilbert series for GrDer(M(f)) is P(t) = % + t% + t% + t% + t% + t% + 3T+ 4t + 512 + 483 +
3th + 215 + 20 4+ 8.

The Es singularity is the isolated hypersurface singularity defined by f = 23 +23+ 23+ - -+22,
we see that its moduli algebra is the tensor product of those of Ay and Ay, then GrDer(M(f)) ~
GrDer(C{z}/(x?)) ® GrDer(C{z}/(z*)), and the dimensions of each degrees of GrDer(Es) are
8,10,13,10,9,6,5,2,1. If we choose wt(x1) = 5, wt(ze) = 3, and wt(x;) = 15/2,¥3 < i < n, then
its Hilbert series is P(t) = s + fr+ g+ s+ + s+ m+ o+ + 5 +8+204+3t2 +6t° +
44 4% + 420 + 3t + 209 + 2¢M 14

Now we give some conclusions.
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Theorem 4.10. The Conjecture and [{-3 hold for the simple hypersurface singularity
case.

Proof. Tt follows from proofs of Proposition and our explicit calculations imme-
diately. O

Theorem 4.11. The Conjecture and[{.4 hold for the case of Brieskorn singularity.

Proof. Let the isolated hypersurface singularity (V' (f),0) be defined by f = z{* + 252 +-- -+ a8,
then its moduli algebra M (f) ~ C{x1, za, ...,z }/(z{ a2t a1 o @ Cl{a}/ (x4,
So GrDer(M(f)) ~ @}, GrDer(C{xz;}/(z¥ 1)) from Theorem We have verified that the
Conjecture and hold for Ay, singularities, hence hold for M (f) directly from this isomor-
phism. Now let Der?®—4(C{z;}/(x%"))/Der?*=5(C{x;}/(x% ")) = C(D;) for each i, then
Dy := ®}'_, D; satisfies the conditions in Conjecture @ O

4.2. The binomial isolated singularities case.
As the binomial singularity only has three types up to analytical equivalence, we will concen-
trate on the binomial singularity (V' (f),0) of types f = 2% + 4 and f = 2% + ¢ .

For the isolated hypersurface singularity (V(f),0) defined by f = 2% 4+ y°, we construct
higher derivations of M (f) directly as following.
Proposition 4.12. Remark Dy = ZQG 2 Z ( 1) (a_?H) (b_}”)a:iyjag(cafﬂi)(‘)éb*lﬂ), and
Z2a 2 Z ( 1)i+i (2a—i2+7,)$z ]8:532a ZH)@(/])’ then
(Z)Do := Dy — bDy induces a higher derivation on M(f) = C{xz,y}/(x® 'y, + by*~1).
(2)Der>(M(f)) is a free M(f)-module of rank b(a — 1), moreover, (Do, z%),0 <i < a —1,
and (Do, x'y?),0<i<a—2,1<j<b—1,i+j<a+b—3, form a basis of it.

For the isolated hypersurface singularity (V' (f),0) defined by f = 2% + y’z, we construct
higher derivations of M (f) directly as following.
Proposition 4.13. Remark Dy = Y752 ZQZ’ (=1t (a1 (b*;ﬂ')$iyja:(va—1+i)a?gb—1+j)’

220,— ZQb 2( )H—j (2a i2+z)$l ]ag(;a 2+Z)a?5‘7‘)7

D3 — Y22 Z2b 2(1)itd <2bfj2+j)xiyjaéz)a§2b—2+])’ then

(1)Dg := D1 — bDy — aDs induces a higher derivation on M(f) = C{z,y}/(ax® ty +y°, 2% +
bay®~1).

(2)Der>®(M(f)) is a free M(f)-module of rank ab— 1, moreover, (D, x'y?),0 <i < a—1,0 <
j<b—1i+j<a+b—2, form a basis of it.

We omit the proofs of the above two propositions, they are just obtained from the calculations
of combinatorial numbers similar as before. And the following theorem is immediately obtained

from Proposition [£.12) and [£.13]

Theorem 4.14. The Conjecture and[{.4 hold for the binomial singularity case.

4.3. The simple elliptic singularities case.
We check the Conjecture and for simple elliptic singularities of types F7 and Ej.

The simple elliptic singularities E; is an isolated hypersurface singularity defined by f; =
x4yt +ta?y? + 22, with t2 # 4. By means of programming, we calculate the dimensions of each
degrees of GrDer(M(f;)) are 9,11,14,13,13,10,8,2,1. If We choose wt(x) = wt(y) = 1, wt(z ) 2,
then the Hilbert series for GrDer(M(fy)) is P(s) = &+ &+ 13 + 0 4+19+ 165+ 105> + 45> + 5.
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The simple elliptic singularities E is an isolated hypersurface singularity defined by f; = 25+
Y3+ 22 +taty, with 4¢3 +27 # 0. By means of programming, we calculate the dimensions of each
degrees of GrDer(M(f)) are 10,12,15,13,13,10,9,6,5,3,2,1,1. If we choose wt(z) = 1, wt(y) =
2, wt(z) = 3, then the Hilbert series for GrDer(M(fy)) is P(s) = s% + S% + S% + S% + g + 4
16 + 14s + 1252 + 853 + 5s* + 25° + 5.

Theorem 4.15. The C’onjecture cmd hold for E7 and Eg types of simple elliptic singu-
larity case.

5. THE INEQUALITY CONJECTURE FOR THE CASE OF BINOMIAL SINGULARITIES

In this section, we prove the inequality Conjecture for the binomial singularities case. We
have known that each binomial singularity (V(f),0) is analytically equivalent to one of these
three cases : (A)f = 2% +1° (B)f = 2% + 4% (C)f = 2% +yPx. First, we give the explicit
expression of the function ha(w,ws, ..., wy,) as stated in Conjecture .

Proposition 5.1. Let (V,0) be an isolated hypersurface singularity defined by f = z{* + x5* +
<4 xdn where ay, ag, ..., an > 2, then

dimDerz(M(V))/Derl(M(V))_n(n;l) (@—1)-n> [Jae-1+ > [ (a—-1).

i=1 i=1 ki 1<i<j<n k##i,j

Proof. Same as the proof of Theorem we know that M (V) ~ Q" , C{xl}/(mf’_l)

For each C{z;}/(x% "), we have seen in section 4| that Der!(C{x;}/(z%~")) is of dimension
(a; — 2), with a basis 2;0y,, 220y,, ..., 2% 20y,. And Der?(C{z;}/(z% 1))/ Der'(C{a;} /(% 1))

is of dimension (a; — 2), with a basis 0, — %xiﬁg),x?&g), :c?&g), e x;«“_QBg).

From Theorem [B, we have GrDer(M(V)) ~ @I, GrDer(C{x;}/(z%~")), therefore
dimDer?*(M(V))/Der'(M(V)) = 31 < jen(@i=2)(a;=2) [Ty, i ;(ar—1)+307 1 (ai—2) TTj e (an—
1) = w [[iii(ai —1) —n2, Hk;éi(ak -1)+ 21§i<j§n Hk;ﬁi,j(ak’ —-1). U

Definition 5.2. For a1, as, ...,a, > 1, define the function hg(ay, ag, ...,ay,) to be
n

ho(ar, ..., ap) = ”(”;1) [T@-10-nSl@m-+ 3 [ @-1.

i=1 i=1 ki 1<i<j<n k+#i,j

Now we begin to calculate dimDer?(M(V))/Der!(M(V)) for the binomial singularity (V,0)
of type (B) and type (C).

Proposition 5.3. Let (V(f),0) be an isolated hypersurface singularity defined by f = x% +1°,
b>2, then

3ab—4a — 50+ 10; ifa>2,b> 3,
dimDer?(M(f))/Der(M(f)) = { 2a —2; ifa>2,b=2,
0; if a =1.

Proof. Let A := A2 + B0,8, + C93 + DO, + EJ, be a derivation in Der?(M(f)), where the
coefficients A, B,C,D,E € M(f), since M(f) = C{z,y}/(f, fo, fy) ~ C{z,y}/(z* 1y, z* +
by*~1), A is nonzero in Der?(M(f))/Der*(M(f)) if and only if A, B,C are not all zero and
Az L), A(z® 4 by 1), A(z%), Az 192), A(z* 4 bayb~1), A(z%y + by®) all equal to zero
in M(f).
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(1)When a > 3,b > 4, the following equations hold in M (f),

(o=t ) (a—l)( —2)2°3yA+ (a — 1)2* 2B + (a — 1)2* 2yD + 271 E = 0;

(z* + by’ 1) = ala — D)2 2A+b(b—1)(b—2)y*3C + ax®'D + b(b — 1)y’ 2E = 0;

( ) (a — 12 2yA + az® 'B + az® 'yD + 2°F = 0;

(277 1y?) = (a—1)(a—2)2*3y2 A+2(a—1)2* 2y B+22°"1C+ (a—1)2* 2y? D+ 229 1y E = 0;
( +1

b—

NG

a

8

at —}—bxyb D = (a+1)az® P A+b(b—1)y*2B+b(b—1)(b—2)xy?3C+((a+1)z*+ by~ ) D+
Day’2E = (a+1)ax® L A4+b(b—1)y* 2 B+b(b—1)(b—2)xy*3C+az® D+b(b—1)zy* 2 E = 0;
% + by®) = ala — 1) 2yA + az® 1B + b2(b — 1)y*72C + ax® lyD + (2 + b*y*HE =
a(a — 1)z 2yA + az® B 4 b*(b — 1)y*2C + az®'yD + b(b — 1)y*"'E = 0.
We know that M (f) is Artinian, and has the monomial basis: 2'47,0 <i<a—2,0<j<b—1,
221 its dimension u(f) = ab — b+ 1. Write A := Zogiga—2,0§j§b—1 A,-inyj + Aa_Lox“_l,
and express B,C, D, E in the same way, then the above six equalities in M (f) will be turned
into a huge system of linear equations with 5u(f) variables and 6u(f) equations. It seems like

T

El>l>l>l>l>

the system of linear equations is too huge to start with, however, we can only concentrate on
a certain group of variables at one time, and find all equations containing them. Equivalently
speaking, we decompose Der?(M(f))/Der!(M(f)) into smaller subspaces, each of which is the
nullspace of a smaller system of linear equations.

After reordering the equations following the above idea, the conditions to make A a second
order derivation in Der?(M(f)) are as follows:
ala — 1)A170 +aDpo =0, —(a+ 1)abA17() +b(b — 1)3071 —abDyg = 0;
—1)(a=2)A1 k+(a—1)Bog1+(a—1)Dor =0, (a—1)(a—2)A1 x+2(a—1)Bog1+(a—1)Doy =
0<k<b—4
1)(a— 2)A17b_3 +(a— 1)B(]7b_2 +(a— 1)D07b_3 =0, (a—1)(a— 2)./4171,_3 +2(a— 1)30,1)_2 —

bCy—1,0 + (@ —1)Dgp_3 = 0;

(a — 1)( )Al’bfg + (CL — l)Boybfl + (a — 1)D0’b,2 —bE,_10=0;
(a—1)(a—2)Apr=0,0<k<b—4;
(a - I)AO p—3 T+ b(b - 1)(b — 2)Ca72,0 = 0, a(a — 1)14075_3 + b2(b — 1)0(172’0 = 0;
(a - 1)( )A07b,2 - (a — 1)bBa_170 — bEa_Q’O =0, CL(Q — 1)140,572 + b(b — 1)(b — 2)Ca_271 +
b(b — 1) a—2,0 = 0, CL(CL — 1)A0,b—2 — abBa,Lo - bEa72,0 =0, CL(CL — 1)A0,b—2 — abBa,Lo +
b (b —1)Ca21+b(b —1)Ea—20 = 0;
ala — 1)A0,b_1 +b(b—1)(b—2)Cy— 22— abDy_10 + b(b—1)E,— 21 =0;
—a(a—l)bAk,o—i—b(b— )(b )Ck gg—aka 10—|—b(b— 1)Ek 2,1 = 0, (a—{—l)abAk,O—l—b(b—
I)Bk,1,1 +b(b— 1)(1) 2)C— 22— abDy_ 10+b(b— 1)Ey_ 21=0,2<k<a-1,
Bo,o = 0;
(a—=1)Bio+ Ep—10=0, bb—1)(b—2)Cr_11+bb—1)Ey_190=0, —abByo—bEy_10=0,
b(b—l)Bk,o—i-b(b—1)(b—Q)Ckal—i-b(b—l)Ek,l,O =0, —aka70+b2(b—l)Ckal-i-b(b—l)Ek,l,o =
0,1 <k<a-—2;
Cro=0,0<k <a-3.

Since A belongs to Der!(M(f)) if and only if A = B = C = 0 and the above linear equations
hold, we obtain the following basis for Der?(M(f))/Der*(M(f)):

(a
0,
(a—
2

i . . b—
02,2 <i<a—21<j<b-1; xzy"10%
2y 0,0,,1<i<a—22<j<b-1; 2'y0;,0<i<a-23<j<b-1;
y*9? — (a — 2)y*0,,1 <k <b—2;

_ _ a—1)(a—2) ,_ _ _
2y’ 07 — (a—2)y° 2axay——( ;é )z Yoz Y 0.0, — "0y
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1 b-242 . 2 a1 2 02 1 49
0y + —x% 10,0 TTEy0; — —xT70y;
dwa—nY Gt STt VTRt
-1
Yo 12 + an_l&c; xk_Qyzaz + (2= b)2* 2y, 2 <k < a;

b
(b —1)2*02 4 202" 1y0,0, + ala — 1)2""2yd,,2 < k < a— 1.
Therefore, dimDer?(M(f))/Dert(M(f)) = (a—3)(b—1)+1+(a—2)(b—2)+ (a —1)(b—3) +
(b—2)+4+(a—1)+ (a —2) = 3ab— 4a — 5b + 10.

(2)When a > 3,b = 3, we just need to replace the equation a(a — 1)A; 9 + aDpp = 0 by
a(a — 1)A170 + b(b - 1)(b - 2)Ca_17() + aD(L() = 0 and replace —(a + 1)abA170 + b(b — 1)3071 —
CLbD070 =0 by —(CL + 1)abA1’0 + b(b — ]-)BO,l — bz(b - 1)(b — 2)Ca71,0 - abDo,[) = 0. A basis for
Der?(M(f))/Der'(M(f)) can be chosen as:

TP 02 2<i<a—21<j<2 xy?0%
o . , ala—1) ,_
'Y 0,0y,1 <i<a—2,j=2; z0? + ay0,0y + (G)x“ 182 +2(1 — a)0y;
1 b—242 , 2 a-1 Loao o 1 40
p 1)y Oy + —x% 0,0, + 6:6“ Yo, — % 0y;

3a 3
24710, xk*2y28§ — xkfzy(?y, 2<k<a;

xyd? — (a —2)y0y;  y20:0, — y'dy;

P ARt
23:’“85 + 2aa:k*1y(‘3$8y +a(a — 1)xk*2y8y, 2<k<a-1.
Therefore, dimDer?(M(f))/Der'(M(f)) =2(a—-3)+1+(a—2)+5+(a—1)+ (a —2) =
5a — 5 = 3ab — 4a — 5b + 10.

(3)When @ = 2,b > 3, then f = 2y + ¢°, which is the case of Dy, singularity, then
from the case of simple hypersurface singularity we have calculated before, we know that
dimDer?(M(f))/Der'(M(f)) = b+ 2 = 3ab — 4a — 5b + 10.

(4)When b = 2, M(f) ~ C{z,y}/ (% Ly, 2% + 2y) ~ C{z}/(2?*~ ), which reduces to the case
of As,_1 singularity, so dimDer?(M(f))/Dert(M(f)) = 2a — 2.

(5)When a = 1, M(f) ~ C{z,y}/(y,x +by*~") ~ C, dimDer?(M(f))/Der*(M(f)) = 0.

Now, we have proved the proposition completely. O

Proposition 5.4. Let (V(f),0) be an isolated hypersurface singularity defined by f = x%y+yx,
where a,b > 2, then

3ab —4a —4b+13; ifa > 3,b> 3,
dimDer*(M(f))/Der'(M(f)) =< 2b+1; ifa=2,
2a + 1; if b= 2.

Proof. Let A := Ad? + B0, + C@g + D, + Ed, be a derivation in Der?(M(f)), where the
coefficients A, B,C, D, E € M(f), since M(f) = C{xz,y}/(f, fu: fy) = C{z,y}/(az* ty+yb, 2%+
by*~1x), A is nonzero in Der?(M(f))/Der'(M(f)) if and only if A, B,C are not all zero and
Alaz®ly+y?), A(x® + by’ 1), Alazy +yPz), Alaz® 'y? +3P+), A(z2T! +byP~12?), A(xy +
by’x) all equal to zero in M(f).

(1)When a,b > 3, the following equations hold in M(f),
Aaz®ty+y*) = ala —1)(a — 2)z*3yA + ala — 1)2* 2B + b(b — 1)y*2C + a(a — 1)z*2yD +
(ax® ' + by~ )E = 0;
Az + byt ) = a(a— 1) 2A+b(b — 1)y* 2B+ b(b—1)(b — 2)y*32C + (az® * + by* 1) D +
b(b— 1)y~ 22E = 0;
Alaz®y + y°x) = a®(a — 1)z 2yA + (a®2 L + by* DB + b(b — 1)y*22C + a(a — 1)z 'y D +
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b(1 —a)yb~'zE = 0;
Aaz®y? + P = a(a — 1)(a — 2)2*3y2 A + 2a(a — 1)z ?yB + (2az?~1 + (b+ 1)by*~1)C +
ala — 1)z 2y?D + a(1 — b)z* 1yE = 0;
Az by ta?) = ((a + az® ' 4+ 20> A + 2b(b — 1)y*22B + b(b — 1)(b — 2)y*322C +
b(1 —a)y’'zD + b(b — 1)y’ 222E = 0;
A(z% + bybz) = a(a — 1) 2yA + (az® ' + 0?y*" B + (b — 1)y*22C + a(1 — b)z*1yD +
b(b— 1)y~ 12E = 0.

(1.1)We do the cases of a,b > 4 first.
Since M (f) is an Artinian algebra with the monomial basis: 2'9/,0 <i<a—1,0<j <b—1,
we express A 1= Zogiga—l,ogg‘gb—l A; ja'y?, similar for B,C, D and E. Then the conditions to
make A a second order derivation in Der?(M(f)) is as the following:
Ago =05
ala —1)(a — 2)A1 9+ ala — 1)Bo1 +ala — 1)Dgp = 0, ala —1)A10+aDoo =0, b(b—
1)3071 + bDo’o =0, (12(& - 1)14170 + CL((I — b)Bo,l + a(a — 1)D0,0 =0, a(a — 1)(& — 2)14170 +
2a(a — 1)3071 + a(a — 1)D070 = 0, (2 - (a + l)a)bALo + 2b(b — 1)3071 + (1 — a)bD(),() = 0,
a(a —1)A1 0+ a(l —b?)Bo1 + (1 — b)aDg o = 0;
—a(a —1)bAg o+ b(b —1)Bg_11 + b(b — 1)(b — 2)Cr—22 + b(1 —a)Dg—10+ b(b — 1)E_21 =0,
(2—(a+ 1)a)bAk70 + 2b(b — 1)Bk,1,1 + b(b — 1)(b — 2)Ck,2,2 + b(l — a)Dk,Lo +0b(b— 1)Ek,2,1 =
0,2<k<a-—2;
—a(a — 1)bAa—170 + a(a — 1)14071,_1 + b(b — 1)Ba_2,1 + b(b — 1)(b - 2)0[1_3,2 + b(l — (Z)Da_z,g +
b(b—1)Eq—31 =0, (2—(a+1)a)bAs_10+(a+1—2b)aAgp_1+2b(b—1)Bs—21+b(b—1)(b—
2)Caq—32+ (1 —a)bDy_20+b(b—1)E;_31 = 0;
a(a —1)(a — 2)Agx + ala — 1)By g1 — ab(b — 1)Co g y2 + ala — 1) Dy + a(l — b)Eg 41 = 0,
ala—1)(a— 2)A27k + 2a(a — 1)Bl,k+1 +2-(0b+ 1)b)aC’07k+2 +a(a— 1)D1’k +a(l— b)E()’k_H =
0,0<k<b—2
ala —1)(a — 2)Azp-3+ala —1)B1p—o —ab(b—1)Cop—1 + b(b — 1)Coq—1,0 + ala — 1) D1 p—3 +
a(l=b)Eyp—2=0, ala—1)(a—2)Asp-3+2a(a—1)Bipa+ (2—(b+1)b)aCpp_1+ (b+1—
2a)bCq—10 + ala — 1)D1,b_3 +a(l— b)E()J)_Q = 0;
ala—1)(a—2)Asp—2+ala—1)Byp—1+b(b—1)Co11+ala—1)D1p—2+a(l —b)Epp—1+b(1—

a)Ey 10 =0;

a(a—1)(a—2)A1 g +ala—1)Bog+1 +ala—1)Doy =0, ala—1)A1,—ab(b—1)Boy+1+a(l—
b)Dor =0, a?(a—1)A1r+ala—b)Bogi1+ala—1)Dor =0, ala—1)(a—2)Asx+2a(a—
1)B()7k+1 + a(a — 1)D0JC = 0, CL(CL - 1)A17k + CL(l - bQ)B()’k_H + a(l - b)DO,k = 0, 1< k < b— 4;

(a — 1)(& — 2)141717,3 + a(a — 1)B0,b72 + b(b — 1)0,1_2’0 + a(a — 1)Dgyb,3 = 0, a(a — 1)1417[,,3 —
ab(b—1)Bgyp—2+b(b—1)(b—2)Cy20+a(l —b)Dop_35 =0, a?(a—1)A1p_3+a(a—b)Bgp_a+

a— 1)A1’b71 + b(b — 1)Ba—1,1 + b(b — 1)(b — 2)Ca_272 + a(l - b)DgJFl + b(l — CL)DQ_LO + b(b —

b(b—1)Cy—2p+a(a—1)Dyp—3 =0, ala—1)(a—2)A;p-3+2a(a—1)Byp_2+(b+1—2a)bCo_20+
a(a — 1)D07b,3 =0, a(a — l)Al’b,3 + a(l - b2)307b,2 + bz(b — 1)Ca_2’0 + a(l — b)Doyb,;g = 0;
ala—1)(a —2)A;p—2 +ala — 1)Byp—1 — ala — 1)bBy_10 + b(b — 1)Cy—21 + a(a — 1) Dy p_2 +
b1 —a)Ea 20 =0, a(a—1)A1ys —ab(b—1)Bapi +b(b—1)Ba_ro-+b(b—1)(b—2)Cy-21 +
a(l - b)Do’b,Q + b(b — 1)Ea_270 = 0, a2(a — 1)A1’b,2 + a(a — b)BO,bfl + b(l - CL2)BG_170 +
b(b — 1)Ca_271 + a(a — 1)D0’b_2 + b(l — G)Ea—Q,O =0, a(a — 1)A1’b_2 + a(l — 52)307(,_1 + b(b —
a)Ba,LO + b2(b — 1)0(17271 + a(l — b)D()’b_Q + b(b — 1)Ea72’0 = 0;
al

)

a(a - 1)(@ - 2)A07b_3 + b(b - 1)0(1_370 = 0, a(a — 1)A07b_3 + b(b - 1)(b — 2)0(1_37() = 0,
az(a — 1)A0,b—3 + b(b - 1)0(1,370 =0, a(a — 1)(& — 2)A0,b—3 + (b + 1 - 2a)bC’a,3’0 =0,
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ala+1—2b)Agp—3+bb—1)(b—2)Ca30=0, ala—1)Agp-3+b*(b—1)Ch_30=0;

(
a(a — 1)(& — Q)Ao’b,Q — CL(CL - 1)bBa_270 + b(b — 1)Ca_371 + b(l - a)Ea_370 =0, a(a — 1)A0,b,2 +
b(b — 1)Ba,270 + b(b — 1)(b — 2)Ca,371 + b(b — 1)Ea,3’0 =0, a2(a — 1)A0,b—2 + b(l — CLQ)BQ,ZO +
b(b— I)Ca_3,1 +b(1 - G)Ea_&o =0, a(a+ 1— 2[))14075_2 —I—2b(b— 1)Ba_2’0 +b(b— 1)(()— 2)Ca_3,1 +
b(b — 1)Ea_37() =0, a(a— 1)A07b72 +b(b — Q)BG_Q,O + b2(b — 1)Ca—3,1 +b(b — 1)Ea_370 = 0;

(We omit the remaining equations, as they can be derived from the symmetry of (z;a; A) and
(y;b;C). Then we can obtain the following basis for Der?(M(f))/Dert(M(f)):

2Pt 3<i<a—-1,1<j<b-1; Xt 18>
Y 0,0,,2<i<a—-1,2<j<b-1; 290, 1<i<a—-13<;j<b-1;
b—1 —1
2R~ a?OR 4 20y0,0, + Ty 0 — 20 — 40
(b—1)2"9% + 2(a — 1)2" 1yd,0, + (a — 1)(a — 2)2*%y8,,3 <k < a —2;
:):k_2y28§ +(2-b)a2"2y9,,3<k<a—2;
(b— 1)z 192 + (2a — 2)2° 2y0,0, + (a — 1)(a — 2)z°yd,;
byb_lag + Za:E“_Qyﬁx@y +az® %9, — ana_?’y@y; ma_?’yQ@Z +(2- b)xa_3y3y;
2yk8§ +(2—a)zy*o,, 1 <k <b—4;
2(b — 1)ay" 0,0y + (a — D)y 202 + (b— 1) (b — 2)ay 0, 1 <k < b— 4
2p=392 + (2 — a)zyP 30, 2ba:yb*28$8y + aa:aflai — by 30, + byb*28y;

2(b — 1)y’ 20,0, + (a — 1)yb_18§ +(b=1)(b—2)zy*30,;
b—1
2?7202 4+ (2 — a)ay’ 20y xyP710,0, — xy’ 20y 2! 82 + 17 2719,
b(b—1)
a—1

wyP 302 4 2by® 20,0, + ax“_28§ —b(b+ 1)y*30,;

1 282 + 1 10,0, + 1 02 82 b+1

2a(a — 1) a(b — 1) TV 2b(b - 1) 2b(b — 1)

1 b—2 42 1 1 1 9 o a+1
a2 19,8, + ———° ot
2a(a — 1)” st - v oae—n" YT 2aa o1

afZay;

yb72aw;

_l’_

-1
xy’ 10?2 —|— 1Y y* 1o, a:a_ly&r@y — xa_2y8y; xa_2y285 +(2- b)xa_2y8y;

CL(Z)CL__ll)a:a3y8§ —a(a+1)2°739,.
Therefore, dimDer?(M(f))/Dert(M(f)) = (a—3)(b—1)+ 1+ (a—2)(b—2)+ (a—1)(b—3) +
2+2(a—4)+3+2(b—4)+ 13 =3ab—4a — 4b+ 13.

(1.2)Next, we consider the cases of a > 4,b = 3. From the above restrictions, only the
equations containing variables Ao and Az will be changed.

byb*28§ + 2aa:“28$(9y +

More explicitly, the equations relating to A; o should be enlarged from the above equations
containing Aj; ;—3 by adding a(a — 1)A10 + 6Cy—20 + aDoo = 0 and 3(2 — a(a + 1))A1o +
123071 — 1801172,0 + 3(1 - CL)D()’() = 0. These lead to Al,O == B()J_ = Ca,Q,O = DQ’O = 0. And
the equations relating to Az o should be enlarged from the above equations containing As;_3 by
adding equations —3a(a — 1)A29 + 6811+ 6Ch2 — 18C4—10+ 3(1 —a)D1o+6Ep; = 0 and
32—ala+1))Az0+ 12811 +6Ch2 —18C4—10+ 3(1 — a)D1 + 6Ey; = 0. We will obtain a
2-dimensional subspace of Der?((M(f))/Der'((M(f)), which has a basis 2292+ (a —1)zy9,0, +
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%xa—lag +2(1—a)x0,, (3(1—a)y®+ 2am“_1)8§ + (9a — 3)0y. Then we obtain the following
basis for Der?(M(f))/Dert(M(f)):

PR3 <i<a-1,1<j<2 2’0
xin&Bay, 2<i<a-—1; x“_1y285;
20702 4+ 2(a — 1) 190,0, + (a — 1)(a — 2)2" 2y, 3 <k < a —2;
xk_2y28§ — xk_any, 3<k<a—2;
227102 + (2a — 2)2*?y0, 0, + (a — 1)(a — 2)z*>yd,;
3y28g + Zama’_zy@x@y + az® 29, — 2aw“_3y3y; xa_3y23§ — x“_3y(9y;
4xy0,0y + (a — 1)y28§ + 220,;

22yd? + (2 — a)zyd,; a:y28x8y — 2y0y; x”*1y82 + x“ilay;

a—1

1 1
Tyd? + 28 Oy + —=ax~ 2y82+ —z® 8y;

2a(a —1) 12 3

1 1 1
xy@i—i-i a=1p, Oy + —x~ 2y82 ot )yﬁm;

2a(a — 1) 3(a—1) 12 2a(a — 1

-1
202 + ——120,; xaflyaxay — :1:“72y8y; 93“23/285 — xa72y8y;

2

a(la—1
3yd2 + 2a2°720,0, + (2)90“_33185 —a(a+1)2°730,;

2202 + (a — 1)2y0,0, + a(a(j_l)x“_lﬁg +2(1 —a)xdy;  (3(1 —a)y® + 2a33a_1)8§ + (9a — 3)0,.

Therefore, dimDer?(M(f))/Der*(M(f)) =2(a—3)+1+(a—2)+1+2(a—4)+15=5a+1 =
3ab — 4a — 4b + 13.

(1.3)F0r the case of a = b = 3, we directly using magma calculated that:
Der?(M(f))/Dert(M(f)) = C(9, — iy82 $20,0, — Zy&r, 2y28§ + Y00y + %x28§,y38§ -
Y202, 482, %m@Q 20, + y0,0y + %:E@%,a:y@ﬁ (2% + y*)0,0, + a:y@%,xy%g — xyzag,azgag +
22y0,0y + Y202, yO, + i(wQ —y%)0,0y, 20y — %(wz —y?)02, xyd, + %y‘g@%, 220, + xy202, y3 0,0, +
3xy202, y48x8y, 2y20,0, + %y?’@%, y*02), it is 16-dimensional, satisfies the proposition.

(2)When a = 2, the following equations holds in M(f),

A(fy) = 2B +b(b— 1)y*~2C + 2yD + (2z + by’ 1) E = 0;

A(fy) =24+ b(b—1)y*2B +b(b—1)(b— 2)y*32C + (2x+byb YD +b(b—1)y*22FE = 0;
Az fy) = dyA+ (4z + by’ ) B + b(b — 1)y*22C + 22yD — by’ 12 E = 0;

A(yfz) = 4yB + (4 + (b+ 1)by’~ 1)0 + 242D +2(1 — b)ayE = 0;

A(zfy) = (62+2by° 1) A+2b(b—1)y* 22 B+b(b—1)(b—2)y*222C —by* e D+b(b—1)y* 222 E =
0;

Ayfy) = 2yA + (22 + b*y* 1) B + b2(b — 1)y 22C + 2(1 — b)azyD + b(b — 1)y* 12 E = 0.
(2.1)For the case of b > 3, after some cumbersome calculations similar as above, we obtain
the following basis for Der?(M(f))/Der(M(f)):

2
a;ykaz, 2<k<b-—1; bry’ 202+ 420,0, + myﬁi + by’ 209, — 40y;

(20— Day’ 102+ 2z + 4" 10a; b(b— 1)y’ 107 — 2(b — 1)ayd,0y + y°0; + (b — 2)ydy;
2(b — 1)ay*0,0, + y" 102 + (b —2)y*9,,2 <k <b—3;

b(b+ 1)
2

2(b— 1)ay" 20,0, + y*'0; + (2 — b)y" 20y bay’ 20,0, + 0] — 2y 30y
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b(b—1
uxybflaway — a;yai; wybil(?x@y — 24°720,.
So dimDer?(M(f))/Dert(M(f)) = (b—2)+3+ (b—4) +4=2b+1.

(2.2)For the case of a = b = 2, we directly using magma calculated that:
Der?(M(f))/Der*(M(f)) = C(oy + ;1385 +0p — 2(z + y)0,0y + y02, (2z + y)@i + 30, — 2z +
49) 0,0y + (y — )02, Y202 — y? 0,0y + Y202, 2y0 — 2y20:0, + y*02, 220, + y?0:0, — 2y>02), it is
5-dimensional, satisfies the proposition.

Now we have finished the whole proof of the proposition. O
After these tedious calculations, we begin to prove the main Theorem [C|

Proof. (of Theorem|C)) As the binomial singularity (V/(f), 0) has only three types up to analytical
equivalence, we only need to treat these three typical cases.

(1)When f = 2 + y®, the equality holds just from the definition of hs(a,b), and in this case,
dimDer?(M(V))/Der'(M(V)) = ha(a,b) = h2(w1’ wz) = 3ab — 5a — 5b + 8.

(2)When f = 2%+, wy = wt(z) = ba;b’ wy == wt(y) = 3, and h2(w1’ le) = 3(7%1—2)(%2—
2) + (4 —2) + (& —2) = 3ab— 5b — 2;%; + 8.
If a = 1, then hy( —2b—2 bl + 8 and since wi, we < 1/2, we must have b = 2, and
h2<w17w2) =0.
If a >2,b=2, then hg(wl, w2) = 2a — 2 =dimDer?(M(V))/Der'(M(V)).
If a > 2,b > 3, from Propos1t10n dimDer? ( (V))/Dert(M(V)) = 3ab — 4a — 5b + 10 <
3ab — 5b — 3a + 8 < 3ab — 5b — ;2 a+8—h2( L,

w1’ w2
(3)When f = 2% + 3Pz, wy = wt(z) = 2L wy = wt(y) = 27, and hg(w%,wj)
3ab — 2a — 2b+ 5 — He=l) 200 11)
If a = 2, then hQ(w , wg) = 2b+3—3%;, and from Propositionm, dimDer?(M(f))/Der*(M(f)) =
26+1< hg(w17 o5 )» the case of b = 2 is symmetrical.
If a,b > 3, from Proposition dimDer?(M(f))/Der!(M(f)) = 3ab — 4a — 4b + 13, since
2a-1) + 2(0-1) < (a—1)+ (b — 1) < 2a + 2b — 8, then dimDer*(M(f))/Der*(M(f)) <

71 a—1
ho (L O

wl’wg) -

w1’ wa )
6. AN EXAMPLE FOR THE NAKAI CONJECTURE

In section [2] we give a brief statement for Zariski-Lipman Conjecture. It has been shown that
the Nakai Conjecture implies the Zariski-Lipman Conjecture, and both of these two conjectures
can be reduced to the case of isolated singularities [2].

For the case of hypersurface singularities, Singh gave a stronger conjecture [20], which states
that for a k-algebra R = k[z1, ..., x,,]/(F), if Der}(R) is generated by Derj (R), then R is regular.
Singh’s conjecture for the ring k[z1,x2, ..., zy]/(a12* + - - - + anz)’) has been checked in [4]. In
this section, we will imitate their method to prove Singh’s conjecture for the case of Brieskorn
singularities.

We fix some notations in this section first. Let k be a field of characteristic zero, remark
S = klx1,x2, ...,y the polynomial ring, F' = a7' + 25? + -+ + 2%, and R = S/(F) the affine
algebra. Our goal is to show that Derf(R) can not be generated by Der}.(R).

Lemma 6.1. ([4]) For a weighted homogeneous polynomial f € S of weight type (w1, wa, ..., wp; 1),
denote Dij = fr,0r; — fz;0x; the Hamiltonian derivations, and E = o wixiOy, the Euler
derivation, then Der}(S/(f)) is generated by D;j,1 <1i < j <n and E as S/(f)-module.
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Proof. Let D € Deri(S) such that D(f) = hf, h € S, as E(f) = f, then D — hE € Der}(S5).
So it is no matter to assume D(f) = 0, and we prove that D can be generated by D;;’s.

Set D = Y, hiOy,, we have D(f) = > "  hifs,;=0, hifs, = —> i ohifs;. Because
{fz1: fros - f2n } 1S & regular sequence, then k1 € (fay, fag, s fon)s let hi = > 1" o gifz,, then
D = (375 9jfu;) 00+ 00 hiOu, = 377 _o(—9;D1j) + 1o (hi+gif1)Oz;. We continue the same
operator for > . (h;+gif1)0x,. Flnally, we will obtain D = D'+ pd,, , where D’ is generated by
D;j’s. D(f) = pfs, =0, and since f,, is regular in S, p =0, thus D is generated by D;;’s. [

Lemma 6.2. ([4]) With notations as above, let d € Der}(S), D € Deri(S) satisfying D(F) C
(F),d(F) C (F), the following facts hold:

1) d(z;) € Ji = (@07 afi e 2l T L) and d(J;) C Ji;

2) d(x;iF) € J; - (F) and d(J; - (F)) C Ji - (F)

3) If 2 <l €N, then for each j € {1,...,n}, D(:leé-) € (21,2 ]_ Y and D(z,F) € J;.

Proof. 1) and 2) are just direct computations, we omit them.
For 3), we do induction on I. For [ = 2, by the definition of second order derivations, D(xlx?) =
le(xi) +2z;D(x1) — 2z12;D(z5) — I‘?D(l‘l) € (z1,25).

Assume 3) holds for [ — 1, the for the case of [, we have D(:Elxé) = D(:Elmjxéfl) = :ch(:L‘é-) +
ij(aﬁla:lfl) + a:l_lD(xla;j) — xla:jD(mé._l) - mlxé_lD(aﬁj) — xé-D(a:l). From the induction hy-

pothesis, D(xlxl h e (xl,xé 2),D(:1:§71) € (:z;*Q), thus D(:clxé-) € (x1, é D), and D(z1F) =

Zz:l D(l‘l.%' ) e Ji. O

Now we define a special second order derivation of S/(F'), and we prove that it does not
belong to Dery(S/(F)) + Deri(S/(F))Derj(S/(F)).

Definition 6.3. Remark G = [[;, =" ~2 we define a second order derivation in Der?(S) as
following,
Dy ‘“_1 S Go?, - 2G Ja Oy, + a1y NG g
- Z 901 - 7$1 Z r1Yx; +a Z a2 a]_2 zj
j=2 4575

Proposition 6.4. The derivation Dy defined above induces a second order derivation on S/(F).

Proof. From the Proposition we just need to check that Do(F) € (F), [Do,x:](F) €
(F),V1<i<n.

Do(F) = ((ar—1)z§ =0, W=Dt =G Ly Gay (a3~ Do 2 a0, W=l

a; a;
= 0.

[Do, zj] = —2G Y77 2218 + 2z IZ] o 2‘“G,26mj for j > 2, then [Dy, z;](F)
.7

:—2sz 2311'“1 1:rj+2x“1 12;’ 221 G—O

1 _ 1
[Do,z1] = <“;11 Yy )G = 2w GOy —2G Yy 10y, = (U =20, 4 )G —2GE,
where £ =" | = xzﬁm is the Euler derivation, then [Dy, a;l](F) = (“gl — o aﬂ;;l —2)GF €
(F).
Therefore Dy induces a second order derivation on the affine algebra S/(F). O

Theorem 6.5. For the k-algebra S/(F) defined above, we have Deri(S/(F)) # deri(S/(F)),
where deri(S/(F)) = Deri(S/(F)) + Deri(S/(F))Deri(S/(F)). In other words, the Nakai
Congjecture holds for the case of Brieskorn singularity.
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Proof. Consider the derivation Dy we have constructed above, from the previous proposition, D
induces a second order derivation on S/(F), we still denote it by Dy. Assume Dy € deri(S/(F)),
then Dy =d+ Y d;od, + FD in Deri(S), where d,d;,d; € Deri(S) and D € Der(S).

From Lemma we know that Do(z1F) € F - Jy, where J; = (wl,xgrl, ..z%~1). However,

n

from the calculation in the proof of Proposition Do(x1F) = [Do,z1](F) + x1Do(F) =
(a;—;l =2 agl —2)GF, and (‘”a—:l =20 a”lgl —2)G does not belong to J;. As F' is regular

in S, Do(x1F) ¢ F - J1, which leads to a contradiction. O

Now we see that Theorem |[D| immediately follows from it.

7. APPENDIX: MAGMA PROGRAM FOR CALCULATING HIGHER DERIVATIONS

Here we list the magma code for calculating the third order derivations of M (V') for E;
singularity (V,0) = ({23 4+ 2y®> = 0},0). One need to run the program twice: for the second
running, input the result below the dashed line of the first running.

>QQ:=RationalField();

>R < x,y >:= PolynomialRing(QQ,2);
>% change FF

>FF:= xA\3+x*yA3;
>fl:=Derivative(FF,1,1);
>f2:=Derivative(FF,1,2);

>printf 7f1:= %o;\n” , 1;

>printf " 2:= %o;\n” , £2;

>printf "FF:= %o;\n” , FF;

>% change TM: a basis of the moduli algebra
> TM:=[ 1, y, yA2, yA3, yA4, x, x*y];

>rki=#TM;
>% change m: the order of the higher derivations
>m:=3;

>l:=rk*(Binomial(m+2,2)-1);
>p:=Binomial(m+2,2)-1;

>b:=Matrix(R, m+1,m+1,[<i,j,0>:1,j in [1..m+1]]);
>for i:=0 to m do

> for j:=0 to m do

> if (i+j ne 0 and i+j le m) then

> bli+1][j+1):=f1;

> b[i+1][j+1]:=Derivative(b[i+1][j+1],i,1) /Factorial(i);
> b[i+1][j+1]:=Derivative(b[i+1][j+1].,j,2) /Factorial(j);
> end if;

> end for;

>end for;

>c:=Matrix(R, m+1,m+1,[<i,j,0>:1,j in [1..m+1]]);
>for i:=0 to m do

> for j:=0 to m do

> if (i+j ne 0 and i+j le m) then

> c[i+-1][j+1]:=f2;
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> c[i+1][j+1]:=Derivative(c[i+1][j+1],i,1) /Factorial(i);
> c[i+1][j+1]:=Derivative(c[i+1][j+1].j,2) /Factorial(j);
> end if;

> end for;

>end for;

>7 -7
>printf ”QQ:=RationalField();\n”;
>printf ”dimA:=%o0;\n", rk;
>printf’ m:=%o0;\n” m;
>printf’1:=%o;\n” 1;

>printf” p:=%o0;\n” ,p;

>printf ”"R:= PolynomialRing(QQ,1);\n”;
>printf "F<”;

>for i:=0 to m do

> for j:=0 to m do

> if (i+j ne 0 and i+j le m) then

> for k:=1 to rk do

> printf”a_%o0_%o0_%0" i,j,k;

> if(i ne m or j ne 0 or k ne rk) then
printf”,”;

else printf”>"”;

end if;

end for;

printf ”\n”;

end if;

end for;

>end for;

>printf’:= FieldOfFractions(R); \n”;
>printf " A<x, y> := AffineAlgebra<F, x, y|\n";
>printf " %o,\n%o0,\n%o0>; \n 7 FF f1,2;
>printf "FF:=%o; \n” ,FF;

>printf ?TM:=[";

>for i:=1 to rk-1 do

>printf ” %o, 7, TM[iJ;

>end for;

>printf ”%o |;\n”, TM[rk];

vV VVYVVYVYV

>printf’ a:=Matrix(A, %o0,%0,[<i,j,0>:1,j in [1..%0]]);\n”,p,p,p;
>printf’s:=1;\n";

>printf”’for 1:=0 to m do\n”;

>printf” for j:=0 to m do\n”;

>printf” if (i+j ne 0 and i+j le m) then\n”;

>printf” P:=0;\n";

>printf” for k:=1 to dimA do\n”;

>printf” P:=P+F.s*TM[k];\n";

>printf” s:=s+1;\n”;

>printf” end for;\n”;



26 ZIDA XTAO, STEPHEN S.-T. YAU, AND HUAIQING ZUO
>printf” ali+1][j4+1]:=P;\n”;

>printf” end if;\n”;

>printf” end for; \n”;

>printf” end for;\n";

>printf’b:=Matrix(A, m+1,m+1,[<i,j,0>:1,j in [1.m+1]]);\n”;
>printf’ c:=Matrix(A, m+1,m+1,[<i,j,0>:1,j in [1.m+1]]);\n”;
>printf’ DF1:=Matrix(A, m,m,[<i,j,0>:1,j in [1..m]]);\n”;
>printf’ DF2:=Matrix(A, m,m,[<i,j,0>:1,j in [1..m]]);\n”;

>for i:=0 to m do

> for j:=0 to m do

> if (i+j ne 0 and i+j le m) then

> printf "b[%o][%0]:=%0;\n", i+1,j4+1,bli+1][j+1];
> end if;

> end for;

>end for;

>for i:=0 to m do

> for j:=0 to m do

> if (i+j ne 0 and i+j le m) then

> printf ”c[%o0][%0]:=%0;\n", i+1,j+1,ci+1][j+1];
> end if;

> end for;

>end for;

>printf” for u:=0 to m-1 do \n”;

>printf”’ for v:=0 to m-1 do \n”;

>printf” if (u+v le m-1) then \n”;

>printf” DF1[u+1][v+1]:=0; \n”;

>printf” for i:=0 to m do \n”;

>printf” for j:=0 to m do \n”;

>printf” if (i+j ne 0 and i+j le m) then \n”;

>printf” DF1[u+1][v+1]:=DF1[u+1][v+1]+afu+i+1][v+j+1]*b[i+1][j+1];\n";

>printf” end if; \n”;
>printf” end for; \n”;
>printf” end for; \n”;
>printf” end if; \n”;
>printf” end for; \n”;
>printf’end for; \n”;

>printf”’for u:=0 to m-1 do \n”;

>printf” for v:=0 to m-1 do \n”;

>printf” if (u4v le m-1) then \n”;

>printf” DF2[u+1][v+1]:=0; \n”;

>printf” for i:=0 to m do \n”;

>printf”’ for j:=0 to m do \n”;

>printf” if (i+j ne 0 and i+j le m) then \n”;

>printf” DF2[u+1][v+1]:=DF2[u+1][v+1]4+afuti+1][v+j+1]*c[i+1][j+1];\n”";
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>printf” end if; \n”;
>printf” end for; \n”;
>printf” end for; \n”;
>printf” end if; \n”;
>printf” end for; \n”;
>printf’end for; \n”;

>printf 7 V,h:=VectorSpace(A); \n”;

>printf " T:=[";

>for i:=1 to 1-1 do
>printf "R.%o0,”, i;
>end for;

>printf "R.%o];\n”, 1;

>printf 7 LC:=function(a)\n”;
>printf ” return [ MonomialCoefficient(a, TE): TE in T |;\n”;
>printf 7 end function;\n”;

>printf 7 M:=[];\n”;

>printf ” for u:=0 to m-1 do\n”;

>printf 7 for v:=0 to m-1 do\n”;

>printf 7 if (u+v le m-1) then \n”;

>printf 7 for iin [1 .. dimA] do\n”;

>printf ” L:=(h(DF1[u+1][v+1])[i]); a:=Numerator(L);\n";
>printf 7 Append( M,LC(a));\n”;

>printf ” L:=(h(DF2[u+1][v+1])[i]); a:=Numerator(L);\n";
>printf ” Append( M,LC(a));\n”;

>printf 7 end for;\n”;

>printf 7 end if;\n”;

>printf 7 end for;\n”;

>printf 7 end for;\n”;

>printf ”MM:=Matrix(M);\n”;

>printf ”1-Rank(MM);\n”;

>printf ”N:=NullSpace(Transpose(MM)); \n”;
>printf ”B:=Basis(N);\n”;

>printf ”Rank(N);\n”;

>printf ”B:=Basis(N); \n”;

>printf "rk:=#B; rk;\n”;

>printf "RP<x,y>:= PolynomialRing(QQ,2);\n”;

>printf ?TM:=[";

>for i:=1 to rk-1 do
>printf ” %o, 7, TM[iJ;
>end for;

>printf ”%o [;\n”, TM[rk];

.

>printf ”check:=function(a)\n”;
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>printf” Z:=Matrix(RP, %o0,%o0,[<i,j,0>:1,j in [1..%0]]);\n” ,m+1,m+1,m+1;
>ri=1;

>for i:=0 to m do

> for j:=0 to m do

> if (i+j ne 0 and i+j le m) then
>printf ”alpha:= "

> for s:=1 to (rk-1) do

>printf ”a[%o]*TM[%o0]+", r, s;

> ri=r+1;

> end for;

>printf ”a[%o]*TM[%o];\n”, r, rk ;
>ri=r+1;

>printf ” Z[%o][%o]:=alpha;\n” i+1,j+1;
> end if;

> end for;

>end for;

>printf "return Z;\n”;

>printf ”end function;\n ”;

>printf ” for s:=1 to rk do\n ”;

>printf 7 printf \"e_%%o &=\", s;\n”;
>printf ”for i:=0 to (m-1) do\n”;

>printf ” for j:=0 to m do\n”;

>printf 7 if (i+j ne 0 and i+j le m) then\n”;
>printf 7 if (check(B([s])[i+1][j+1] ne 0) then”;
>printf” printf \” % %o\ \\ \partial x A(%%o) partial_y A(%%o0) + \”,check(B[s])[i+1][j+1],i,j;\n";
>printf 7 end if;\n”;

>printf 7 end if;\n”;

>printf ” end for;\n”;

>printf "end for;\n";

>printf” V:=check(B]s])[m+1][1];\n”;

>printf 7 printf \” %%o\\\ \partial xA(%%o0), \\n \”,check(B[s])[m+1][1],m;\n”;
>printf 7 end for;\n”;
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