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Abstract. In this paper, we introduce many new invariants to singularities, i.e., higher order

derivations of moduli algebras of isolated hypersurface singularities. We investigate their prop-

erties and propose several conjectures for these invariants. In particular, we verify an inequality

conjecture on the dimension of Der2/Der1 for the case of binomial singularities. In addition,

we verify the Nakai Conjecture for the case of Brieskorn singularities.
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1. Introduction

Let (V, 0) ⊂ (Cn, 0) be an isolated hypersurface singularity defined by the holomorphic func-

tion f : (Cn, 0) → (C, 0). Then the moduli algebra M(V ) := On/(f,
∂f
∂x1

, . . . , ∂f
∂xn

) is finite

dimensional. We also denote it as M(f). The well-known Mather-Yau Theorem [16] states

that: Let (V1, 0) and (V2, 0) be two isolated hypersurface singularities, M(V1) and M(V2) be

the moduli algebras, then (V1, 0) ∼= (V2, 0) ⇐⇒ M(V1) ∼= M(V2). In 1983, Yau introduced the

Lie algebra of derivations of moduli algebra M(V ), i.e., L(V ) = Der(M(V ),M(V )). The finite

dimensional Lie algebra L(V ) was called the Yau algebra ([14], [22]). This invariant L(V ) plays

an important role in singularity theory [21]. In this article, we will generalize the Yau algebra

and search for new invariants of a singularity from the higher derivations of its moduli algebra.

For a k-algebra R, from the definition of its n-th order derivations Dernk (R) := Dernk (R,R),

(see Definition 2.6), there is a natural filtration 0 = Der0k(R) ⊂ Der1k(R) ⊂ · · · ⊂ Dernk (R) ⊂
Dern+1

k (R) ⊂ · · · on modules of higher derivations of R. Set Der∞k (R) :=
⋃

n≥0Der
n
k (R), the

module of all higher derivations of R, and the associated graded ring is defined as GrDer(R) :=

R
⊕

(⊕n≥1Der
n
k (R)/Der

n−1
k (R)). In fact, GrDer(R) is a commutative k-algebra (see section

2).

In section 3, we show that for an Artinian k-algebra R, its higher derivations form a fi-

nite dimensional k-vector space Der∞k (R), hence the associated graded k-algebra GrDer(R) is

Artinian. We establish this fact as the following theorem.

Theorem A. Let R be a local Artinian algebra, containing a subfield k isomorphic to its residue

field, then the graded derivation algebra GrDer(R) of R is Artinian. Moreover, the R-module

Der∞k (R) is free of rank dimkR− 1, and dimkGrDer(R) = (dimkR)
2.

Let A,B be two k-algebras, as demonstrated in [3], we have Der1k(A⊗B) ≃ Der1k(A)⊗B +

A⊗Der1k(B), now for the case of higher derivations, we propose an analogous conjecture.

Conjecture 1.1. Let A,B be two finitely generated k-algebras, then there is a canonical iso-

morphism of k-algebras

GrDer(A⊗B) ≃ GrDer(A)⊗GrDer(B).
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We find that when A,B are local Artinian k-algebras with k as their residue field, then this

conjecture holds.

Theorem B. Let A,B be two local Artinian k-algebras, each containing k as a subfield which is

isomorphic to their respective residue fields, then there is a canonical isomorphism of k-algebras

GrDer(A⊗B) ≃ GrDer(A)⊗GrDer(B).

In section 4, we focus on calculating higher derivations of the moduli algebras for certain

typical types of singularities, such as the simple hypersurface singularities (ADE singularities).

We propose the following Conjecture 1.2, and demonstrate its validity for binomial singularities

(see Theorem 4.14).

Conjecture 1.2. Let (V (f), 0) be an isolated hypersurface singularity defined by a weighted

homogeneous polynomial f , and let {ei : 1 ≤ i ≤ µ(f)} be a monomial basis of the moduli

algebra M(f), where e1 = 1 and Ceµ(f) is the socle (the definition can be seen in [8]) of M(f).

For each ei, 2 ≤ i ≤ µ(f), let di be the monomial such that diei = eµ(f). Then the following

hold:

(1)There exists a higher derivation D0 on M(f) that sends eµ(f) to 1, and maps the other ei
to 0.

(2)TheM(f)-module Der∞(M(f)) is free of rank µ(f)−1, generated by ⟨D0, di⟩, 2 ≤ i ≤ µ(f).

(The notation ⟨D0, di⟩ is defined in Proposition 2.7.)

Another problem we are interested in is when the weight type of a weighted homogeneous

hypersurface singularity (V (f), 0) is fixed, what is the upper bound for the C-dimension of

Dern(M(V ))/Dern−1(M(V )) (we omit the subscript C). For the case of n = 1, Hussain-Yau-

Zuo had conjectured that dimL(V ) attains the maximum in the case of Brieskorn singularity (see

the Conjecture 1.1 in [12]). In this paper, we propose the following new inequality conjecture.

Conjecture 1.3. Let (V, 0) be an isolated hypersurface singularity defined by a weighted homoge-

neous polynomial f(x1, ..., xn) of weight type (w1, ..., wn; 1), 0 ≤ wi ≤ 1/2, ∀i, then the following

inequality holds,

dimDerk(M(V ))/Derk−1(M(V )) ≤ hk(
1

w1
,
1

w2
, ...,

1

wn
),

where the function hk(a1, a2, ..., an) denotes the dimension of Derk(M(V ′))/Derk−1(M(V ′)) for

the Brieskorn singularity (V ′, 0) = ({xa11 + xa22 + · · ·+ xann = 0}, 0).

In section 5, we prove that the Conjecture 1.3 holds for the case of k = 2 and (V, 0) is a

binomial isolated singularity. The explicit expression for the function h2(a1, a2, ..., an) is provided

in Definition 5.2.

Theorem C. If (V, 0) is an isolated hypersurface singularity defined by a binomial f(x1, x2) of

weight type (w1, w2; 1), then the following inequality holds:

dimDer2(M(V ))/Der1(M(V )) ≤ h2(
1

w1
,
1

w2
).

An important problem lies in the relationship between the higher derivations and geometry.

Let R be the affine ring of an algebraic variety V over a field k of characteristic zero, it has been

shown in [9] that if R is regular, then GrDer(R) can be generated by Der1k(R) as a k-algebra.

And Y. Nakai (in [18]) proposed the following well-known conjecture.
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Nakai Conjecture: the regularity of R is equivalent to the condition that GrDer(R) can

be generated by Der1k(R).

The Nakai Conjecture for a special case of the ring R = k[x1, ..., xn]/(a1x
m
1 +a2x

m
2 +· · ·+anxmn )

has been proved in [4]. In section 6, we extended this result to the case of f = xa11 +xa22 +· · ·+xann
as follows.

Theorem D. Let k be a field of characteristic zero, then for R = k[x1, x2, ..., xn]/(x
a1
1 +xa22 +· · ·+

xann ), ai ≥ 2, its derivation algebra GrDer(R) cannot be generated by its first order derivations

Der1k(R) as a k-algebra.

Remark 1.4. We can replace the affine ring R in Nakai Conjecture by the moduli algebra

M(V ) of an isolated singularity (V, 0), and propose a contrapositive of a special case of Nakai

Conjecture. For the case of (V, 0) a weighted homogeneous hypersurface singularity, we find that

this is obviously true if our Conjecture 1.2 and the Yau Conjecture(see section 2) hold, as the

higher derivation D0 in Conjecture 1.2 is of negative weight(see Definition 2.1).

At the end of the text, we provide the magma codes for computing higher derivations of the

moduli algebra associated with a weighted homogeneous isolated hypersurface singularity (see

section 7). The example code is used to compute the third order derivations of the moduli

algebra for the E7 singularity [1].

2. Preliminaries

2.1. weighted homogeneous isolated hypersurface singularities.

Definition 2.1. Let k be a field, a polynomial f =
∑

α∈Nn aαx
α ∈ k[x1, ..., xn] is called weighted

homogeneous of weight type (w1, ..., wn; d), if w1α1+w2α2+ · · ·+wnαn = d holds for each multi-

index α = (α1, ..., αn) with aα ̸= 0. We call wi the weight of xi and d the weighted degree of f ,

denoted as wt(xi) = wi and wt(f) = d.

Notice that when the isolated hypersurface singularity (V (f), 0) is defined by a weighted

homogeneous polynomial f ∈ C[x1, ..., xn], the ideal (f, ∂f
∂x1

, . . . , ∂f
∂xn

) of C{x1, ..., xn} is generated
by weighted homogeneous polynomials, hence M(V ) = M(f) = C{x1, ..., xn}/(f, ∂f

∂x1
, . . . , ∂f

∂xn
)

has a graded structure, we call a higher derivation D (see Definition 2.6) ofM(f) to have weight

d if D :M(f)s →M(f)s+d, where M(f)s denotes the set of weight s elements of M(f).

An important class of weighted homogeneous isolated hypersurface singularities is fewnomial

singularities, defined as follows.

Definition 2.2. A weighted homogeneous polynomial f is called fewnomial if the number of

variables coincides with the number of the monomials, and an isolated hypersurface singularity

(V (f), 0) is called a fewnomial singularity if it is defined by a fewnomial. Especially, when f is

in 2 variables, f (resp. (V (f), 0)) is called a binomial (singularity); when f is in 3 variables, f

(resp. (V (f), 0)) is called a trinomial (singularity).

Proposition 2.3. Let (V (f), 0) be a fewnomial singularity with mult(f) ≥ 3, then f is analyt-

ically equivalent to a linear combination of the following three types of series:

(1) xa11 + xa22 + · · ·+ xann , n ≥ 1;

(2) xa11 x2 + xa22 x3 + · · ·xan−1

n−1 xn + xann , n ≥ 2;

(3) xa11 x2 + xa22 x3 + · · ·xan−1

n−1 xn + xann x1, n ≥ 2.

Proposition 2.4. Each binomial singularity (V (f), 0) is analytically equivalent to one of these

three cases: (A)f = xa + yb; (B)f = xay + yb; (C)f = xay + ybx.
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Proposition 2.5. Let (V (f), 0) be a trinomial singularity with mult(f) ≥ 3, then f(x1, x2, x3)

is analytically equivalent to the following five types:

(1) xa11 + xa22 + xa33 ;

(2) xa11 x2 + xa22 x3 + xa33 ;

(3) xa11 x2 + xa22 x3 + xa33 x1;

(4) xa11 + xa22 + xa33 x1;

(5) xa11 x2 + xa22 x1 + xa33 .

2.2. higher derivations and higher differentials.

We review some basic concepts for n-th order derivations and n-th order Kähler differentials.

Let k be a field, R be a k-algebra, A be an R-module, and Homk(R,A) represents the k-linear

maps from R to A. There are two ways to define the derivations of order n, see [20].

The first way is to define inductively, Diffn
k(R,A) = 0 for n < 0, and for n > 0, Diffn

k(R,A) =

{D ∈ Homk(R,A) : [D, a] ∈ Diffn−1
k (R,A),∀a ∈ R}, it is easy to see that Diff0

k(R,A) = A.

We call elements in Diffn
k(R,A) the n-th order differential operators on A, Diff∞

k (R,A) :=⋃
n≥0Diffn

k(R,A). When R = A, Diffn
k(R) := Diffn

k(R,R), sometimes the subscript k is omitted.

The second way is more precise as following.

Definition 2.6. ([18]) D ∈ Homk(R,A) is called an n-th order derivation of R into A over k if

for any n+ 1 elements of R, denoted as a0, a1, ..., an, we have

D(a0a1 · · · an) =
n∑

s=1

(−1)s+1
∑

i1<...<is

ai1 · · · aisD(a0 · · · âi1 · · · âis · · · an),

where the notationˆmeans the corresponding term is omitted. We use Dernk (R,A) to denote the

set of n-th order derivations of R into A over k. And for n ≤ 0, Dernk (R,A) = 0 by convention.

In other words, the definition means that [...[[D, a1], a2], ..., an] = 0,∀a1, a2, ..., an ∈ R holds

for D, see [18].

The relation between these two definitions is Dernk (R,A) = {D ∈ Diffn
k(R,A)|D(1) = 0}, and

there is an isomorphism Diffn
k(R,A) ⋍ A

⊕
Dernk (R,A), which maps D to (D(1), D −D(1)R),

where D(1)R is the R-linear map r → r ·D(1) of R into A. More details can be found in [20].

When A = R, we simply denote Dernk (R,A) by Der
n
k (R). Since for a higher derivation D ∈

Dernk (R) and a higher derivation D
′ ∈ Dermk (R), their compositions DD

′
, D

′
D ∈ Derm+n

k (R),

and their Lie bracket [D,D
′
] ∈ Derm+n−1

k (R), thus we obtain a graded k-algebra structure.

Denote GrDerk(R) := R
⊕

(⊕n≥1Der
n
k (R)/Der

n−1
k (R)), the multiplication on it is just the

composition of higher derivations, moreover, it is commutative.

Now we consider the case of R = k[x1, x2, ...xs]/I, where k is a field of characteristic 0, and I

is an ideal (the case of R = k{x1, x2, ...xs}/I for k a valued field of characteristic 0 is similar).

Let ∂
(α)
x = (1/α!) · ∂α/∂xα be the derivation from k[x1, ..., xs] to R, where α = (α1, ..., αs) is a

multi-index, α! = α1!·α2! · · ·αs!. It is easily known that Diff∞
k (k[x1, ..., xs], R) is a free R-module

generated by all ∂
(α)
x s. The Proposition 2.10 in [20] characterizes the algorithm of the higher

derivations of R.

Proposition 2.7. ([20]) With notations as above, let D =
∑

|α|≤n cα(D)∂
(α)
x ∈ Diffn

k(k[x1, ...xs], R),

in which cα(D) ∈ R, then the following conditions are equivalent:

(1) D(I) = 0 in R, i.e. D can be viewed in Diffn
k(R).

(2)
∑

|α|≤n cα+β(D)∂
(α)
x (I) = 0 in R, for all β ∈ Ns.

(We use the notation ⟨D,xβ⟩ to denote the higher differential operator
∑

|α|≤n cα+β(D)∂
(α)
x
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throughout the entire text, it has been shown in [20] that if we express xβ in the form xβ =

xi1xi2 · · ·xi|β|, then ⟨D,xβ⟩ is just the higher differential operator [...[[D,xi1 ], xi2 ], ..., xi|β| ]. )

(3)
∑

|α|≤n cα+β(D)∂
(α)
x (I) = 0 in R, for all β ∈ Ns satisfying |β| ≤ n− 1.

(4) The assertion in (3) holds for a set of generators of I.

When R = k{x1, x2, ...xs}/I for k a valuation field of characteristic 0, the equivalence of these

conditions still hold after replacing Diffn
k(k[x1, ...xs], R) by Diffn

k(k{x1, ...xs}, R).

An open problem for derivations was proposed by Halperin.

Halperin Conjecture([11]): For a complete intersection algebra R = k[x1, ..., xn]/I, where

I is generated by weighted homogeneous polynomials of the same weight type, then there is no

first order derivations of R with negative weight.

One of the special cases of Halperin Conjecture is the Yau Conjecture.

Yau Conjecture([17]): Let (V (f), 0) be an isolated hypersurface singularity defined by a

weighted homogeneous polynomial f(x1, ..., xn) of weight type (w1, ..., wn; d), assume d ≥ 2w1 ≥
2w2 ≥ · · · ≥ 2wn without loss of generality, then L(V ) := Der1(M(V )) is non-negatively graded.

The Yau Conjecture remains an open problem, with only low-dimensional cases having been

proved, primarily through explicit calculations. Desipite this, there have also been many pro-

gresses in these types of problems (see [5],[6],[17]). And from the examples we calculate in section

4, the Halperin Conjecture will fail if we enlarge the first order derivations to higher derivations.

Next we introduce another object which can be viewed as the dual of the module of n-th

order derivations, that is the n-th order Kähler differentials.

Definition 2.8. Let k be a field, R be a k-algebra, an R-module Ω
(n)
R/k together with a canonical

k-linear map dnR : R→ Ω
(n)
R/k is called the n-th order Kähler differentials of R over k if it satisfies

the following universal property:

For an arbitrary R-module A, and an n-th order derivation D ∈ Dernk (R,A), there exists a

unique R-linear homomorphism h : Ω
(n)
R/k → A, such that D = h ◦ dnR.

Remark 2.9. The above definition is equivalent to say that the functor Dernk (R,−) from

the category of R-modules to the category of sets is representable, and the canonical map

dnR : R→ Ω
(n)
R/k is the universal element.

We give more concrete descriptions for the n-th order Kähler differentials, they are similar

to the case of the first order Kähler differentials.

Theorem 2.10. ([18]) Let R be a k-algebra, denote IR as the kernel of the multiplication map

from R⊗k R to R, giving the structure of R-module to R⊗k R by multiplying on the left. Then

the n-th order Kähler differentials Ω
(n)
R/k are isomorphic to IR/I

n+1
R , and the canonical map is

given by dnR(r) = (1⊗ r − r ⊗ 1) + In+1
R . Moreover, dnR(r) is a higher derivation of order n, we

call it the canonical derivation of R in Ω
(n)
R/k.

At the end of this subsection, we briefly introduce the relation between the derivations,

differentials, and the smoothness.

Theorem 2.11. ([18]) Let k be a field, R be a k-algebra. I ⊂ R be an ideal, and S = R/I,

define the k-linear map ρ : I/In+1 → Ω
(n)
R/k ⊗R S as ρ(r̄) = dnR(r) ⊗ 1, and denote N to be the

S-module generated by the image of ρ. Then one has the following exact sequence:

0 → N → Ω
(n)
R/k ⊗R S → Ω

(n)
S/k → 0.
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When R = k[x1, x2, ..., xs]/I for k a field of characteristic 0 (resp. R = k{x1, x2, ..., xs}/I for

k a valuation field of characteristic 0), this theorem provides an idea to give a free resolution

for R. Remark B = k[x1, x2, ..., xs] (resp. B = k{x1, x2, ..., xs}), I = (f1, f2, ..., fr). As for any

a, b ∈ B, one holds the identity in B ⊗k B:

1⊗ ab− ab⊗ 1 = (1⊗ a− a⊗ 1)(1⊗ b− b⊗ 1) + a(1⊗ b− b⊗ 1) + b(1⊗ a− a⊗ 1),

this implies that dnB(ab) = dnB(a)d
n
B(b) + adnB(b) + bdnB(a),∀a, b ∈ B.

Let h =
∑r

i=1 gifi ∈ I, then ρ(h̄) =
∑

i d
n
B(gifi)⊗ 1 =

∑
i(d

n
B(gi)d

n
B(fi)⊗ 1+ gi(d

n
B(fi)⊗ 1)+

fi(d
n
B(gi) ⊗ 1)) =

∑
i((d

n
B(gi)d

n
B(fi) ⊗ 1 + gi(d

n
B(fi) ⊗ 1)). Remark F i

β = (dnB(x))
βdnB(fi), β ∈

Ns, 1 ≤ i ≤ r. An easy calculation tells that the module N in the above Theorem 2.11 is

generated by the set {F i
β ⊗ 1

∣∣|β| ≤ n− 1} as an R-module.

Lemma 2.12. With notations as above, for β ∈ Ns, |β| ≤ n− 1, 1 ≤ i ≤ r, one has

F i
β =

∑
α∈Ns

1≤|α|≤n

1

(α− β)!

∂α−β (fi)

∂xα−β
(dnB(x))

α ,

and we make a convention that 1
(α−β)!

∂α−β(fi)
∂xα−β = 0, whenever


|α| < 1 + |β|,
αi < βi for some i,

α = β.

Proof. A direct calculation, omitted. □

Definition 2.13. The n-th order Jacobian matrix Jacn(f1, f2, ..., fr) is a matrix of size r
(
s+n−1

s

)
times

(
s+n
s

)
− 1, whose rows are the vectors generated by the coefficients of F i

β’s, as presented

in above lemma.

Remark 2.14. When I = (f) is generated by a single polynomial, then the n-th order Jacobian

matrix Jacn(f) is related to the higher Nash blow up (ref. [7]) of the hypersurface V (f). And

Hussain-Ma-Yau-Zuo raised new invariants of singularities from the n-th Jacobian matrix (see

[13]).

Generalized Jacobian criterion also holds as following.

Theorem 2.15. ([19]) Let f ∈ C[x1, x2, ..., xs] be a reduced non-constant polynomial, p ∈ V (f).

Then p is non-singular if and only if rank(Jacn(f))|p =
(
n+s−1

s

)
.

Theorem 2.16. ([10] Chapter II-8) Let R be a local ring containing a field k isomorphic to its

residue field. Assume further more that k is perfect and R is a localization of a finitely generated

k-algebra. Then Ω
(1)
R/k is a free module of rank dimR if and only if R is a regular local ring.

The above Theorem 2.16 has also been generalized to the n-th order Kähler differentials for

the hypersurface case.

Theorem 2.17. ([19]) Let A = k[x1, x2, ..., xs]/(f), f is irreducible, and R = Am be the local-

ization of A at a maximal ideal m of A. Then Ω
(n)
R/k is a free module of rank

(
n+s−1
s−1

)
if and only

if R is a regular local ring.

Geometrically speaking, the locally freeness of the Kähler differentials implies the smooth-

ness. The Zariski-Lipman Conjecture makes the prediction for the module of derivations that it

has the similar property [15].

Zariski-Lipman Conjecture: when R is the affine ring of an algebraic variety V over a

characteristic zero field k, or R is a local analytic ring, and if Der1k(R) is free, then R is regular.
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3. Proof of main Theorem A and Theorem B

The fact in Theorem 2.10 implies the main Theorem A, now we begin to prove it.

Proof. (of Theorem A) Denote m to be the unique maximal ideal of R, R/m ≃ k. Then R⊗kR is

also a local Artinian algebra with the unique maximal ideal m⊗R+R⊗m, so IR ⊂ m⊗R+R⊗m.

Since R is Artinian, m is nilpotent, write mn = 0, then (m ⊗ R + R ⊗ m)2n−1 = 0, this implies

I2n−1
R = 0.

Therefore, when m ≥ 2n− 2,

Dermk (R) ≃ HomR(Ω
(m)
R/k, R) ≃ HomR(IR/I

m+1
R , R) ≃ HomR(IR, R),

and as this isomorphism is also compatible with the inclusion Dermk (R) ⊂ Derm+1
k (R), we have

Derm+1
k (R)/Dermk (R) = 0 for m ≥ 2n−2. So GrDerk(R) is a finite dimensional k-vector space,

it is Artinian as a k-algebra.

Next we calculate the k-dimension of GrDerk(R). By the definition of IR, there is an exact

sequence of R-modules:

0 → IR → R⊗k R→ R→ 0.

As R is a free R-module, hence projective, this exact sequence splits. So IR is a free R-module of

rank dimkR−1, and Der∞k (R) ≃ HomR(IR, R) is also a free R-module of rank dimkR−1. Thus

dimkGrDerk(R) = dimk Diff∞
k (R) = dimkR + dimkDer

∞
k (R) = dimkR + (dimkR) · (dimkR −

1) = (dimkR)
2. □

To prove the main Theorem B, we propose the following two lemmas to give the inclusion on

one side.

Lemma 3.1. Let A,B be two finitely generated k-algebras, D1 ∈ Diffi
k(A), D2 ∈ Diffj

k(B), then

as a k-linear endomorphism of A⊗B, D1 ⊗D2 induces an (i+ j)-th order differential operator

on A⊗B.

Proof. As A ⊗ Derjk(B) ⊂ Derjk(A ⊗ B) ⊂ Diffi+j
k (A ⊗ B), Derik(A) ⊗ B ⊂ Derik(A ⊗ B) ⊂

Diffi+j
k (A⊗B) from Definition 2.6, we may assume D1 ∈ Derik(A) and D2 ∈ Derjk(B) without

loss of generality.

Write A = k[x1, ..., xr]/I, B = k[y1, ..., ys]/J , D1 is induced from D̃1 ∈ Derik(k[x1, ..., xr], A),

D2 is induced from D̃2 ∈ Derjk(k[y1, ..., ys], B), then A ⊗ B ≃ k[x1, ..., xr, y1, ..., ys]/(I, J), and

D1⊗D2 is induced from D̃1⊗D̃2 ∈ Deri+j
k (k[x1, ..., xr, y1, ..., ys], A⊗B). Now for each monomial

xαyβ, |(α, β)| = |α|+ |β| ≤ i+j−1, ⟨D̃1⊗D̃2, x
αyβ⟩ = ⟨D̃1, x

α⟩⊗⟨D̃2, y
β⟩, and from Proposition

2.7, ⟨D̃1, x
α⟩(I) = 0 in A, ⟨D̃2, y

β⟩(J) = 0 in B, therefore ⟨D̃1 ⊗ D̃2, x
αyβ⟩(I ⊗ k[y1, ..., ys] +

k[x1, ..., xr]⊗ J) = 0 in A⊗B, and D1 ⊗D2 is an (i+ j)-th order derivation of A⊗B. □

Lemma 3.2. For two finitely generated k-algebras A,B, there is a canonical inclusion⊕
i+j=n

Diffi
k(A)

Diff
(i−1)
k (A)

⊗
Diffj

k(B)

Diff
(j−1)
k (B)

↪→ Diffn
k(A⊗B)

Diff
(n−1)
k (A⊗B)

,∀n ≥ 0.

Proof. We do induction on n, the cases of n = 0, 1 have been already known.

Assume this inclusion holds for the case of n − 1, consider the case of n, n ≥ 2. Let

(ψ̄0, ψ̄1, ..., ψ̄n) maps to zero of the right hand side, where ψ̄i ∈
Diffi

k(A)

Diff
(i−1)
k (A)

⊗ Diff
(n−i)
k (B)

Diff
(n−i−1)
k (B)

and ψi is

a preimage of it in Diffi
k(A)⊗Diffn−i

k (B). Write A = k[x1, ..., xr]/I, B = k[y1, ..., ys]/J , then for

any a ∈ {x1, ..., xr}, ⟨
∑
ψi, a⊗ 1⟩ ∈ Diff

(n−2)
k (A⊗B), and ⟨ψi, a⊗ 1⟩ ∈ Diffi−1

k (A)⊗Diffn−i
k (B)
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for each i. By the induction hypothesis, we have ⟨ψi, a⊗ 1⟩ is zero in
Diff

(i−1)
k (A)

Diff
(i−2)
k (A)

⊗ Diff
(n−i)
k (B)

Diff
(n−i−1)
k (B)

.

Similarly for each b ∈ {y1, y2, ..., ys}, ⟨ψi, 1⊗b⟩ is zero in
Diffi

k(A)

Diff
(i−1)
k (A)

⊗ Diff
(n−i−1)
k (B)

Diff
(n−i−2)
k (B)

. If there exists

t such that ψ̄t ̸= 0, express ψt =
∑
Cα,β∂

(α)
x ∂

(β)
y , Cα,β ∈ A ⊗ B, then there exists multi-index

α, β, such that Cα,β ̸= 0 in A⊗B, and |α| = i, |β| = n− i. Without loss of generality, let α1 ̸= 0,

then ⟨ψt, x̄1 ⊗ 1⟩ is not equal to zero in
Diff

(i−1)
k (A)

Diff
(i−2)
k (A)

⊗ Diff
(n−i)
k (B)

Diff
(n−i−1)
k (B)

, a contradiction!

Therefore the inclusion holds for the case of n, we have finished the proof. □

Proof. (of Theorem B) Lemma 3.1 and 3.2 tell that the inclusion ⊇ holds on each degree of the

graded derivation rings. And Theorem A implies that dimkGrDer(A⊗ B) = (dimkA⊗ B)2 =

(dimkA)
2 · (dimkB)2 = dimkGrDer(A) ·dimkGrDer(B) = dimk(GrDer(A)⊗GrDer(B)), they

have the same dimension as k-vector spaces, hence must be isomorphic. □

Remark 3.3. Now we know that Diff∞
k (R) is free R-module of rank dimkR and has k-dimension

(dimkR)
2. In other words, each k-linear endomorphism of R can be realized as a higher differ-

ential operator of R. However, we must notice that GrDerk(R) is not a free R-module.

Corollary 3.4. Let (V (f), 0) be an isolated hypersurface singularity defined by a weighted ho-

mogeneous polynomial f , then the graded derivation algebra GrDer(M(f)) of its moduli al-

gebra M(f) = C{x}/(f, J(f)) is an Artinian C-algebra, whose dimension is µ(f)2, where

µ(f) = dimCM(f) is the Milnor number (equal to the Tjurina number) of (V (f), 0).

4. Some examples

In this section, we list the following two conjectures, and verify them for some concrete

examples.

Conjecture 4.1. Let (V, 0) be an isolated hypersurface singularity defined by a weighted ho-

mogeneous polynomial f , then the highest degree of GrDer(M(V )) is of one dimensional, i.e.

there exists an integral n, such that dimGrDer(M(V ))n = 1 and GrDer(M(V ))m = 0, ∀m > n,

where GrDer(M(V ))i := Deri(M(V ))/Deri−1(M(V )) for i > 0 and GrDer(M(V ))0 :=M(V ).

Conjecture 4.2. Let (V, 0) be an isolated hypersurface singularity defined by a weighted ho-

mogeneous polynomial f , then elements in Der∞(M(V )) can be discussed regarding their ho-

mogeneousness (see the paragraph below Definition 2.1), we claim that the amount of higher

derivations of weight k is the same as the amount of higher derivations of weight −k.

4.1. The simple hypersurface singularities case.

We know that simple hypersurface singularities have classifications with good form, which

are called the ADE singularities (see [1]). Since ADE singularities are defined by weighted

homogeneous polynomials, the weight type of the polynomial f induces a weighted graded

structure on its moduli algebra M(f), and further on the commutative ring GrDer(M(f)).

Let GrDer(M(f))s be the set of weight s elements in GrDer(M(f)), we will also compute the

Hilbert-Poincare series P (t) :=
∑

s dimGrDer(M(f))s · ts for them.

4.1.1. The Ak case.

First, as an example, we present the calculation of the higher derivations of the moduli algebra

associated with the A3 singularity, the algorithm employed is based on Proposition 2.7.
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Example 4.3. The A3 singularity is the isolated hypersurface singularity (V (f), 0) defined by

f = x41+x22+ · · ·+x2n, whose moduli algebra M(V ) ≃ C{x1}/(x31) is a three dimensional vector

space, with a basis 1, x1, x
2
1. From Proposition 2.7, each D ∈ Derm(M(V )) must have the form

D =
∑m

i=1 ci∂
(i)
x1 , ci ∈ M(V ), where ∂

(i)
x1 = 1/i!∂ix1

, we will continue this notation in the whole

text. Now we treat for each m separately.

D = c1∂x1 induces a first order derivation on M(V ) if and only if D(x31) = 3c1x
2
1 equal

to 0 in M(V ), thus c1 = λ1x1 + λ2x
2
1, λ1, λ2 ∈ C, and Der1(M(V )) = C⟨x1∂x1 , x

2
1∂x1⟩; D =

c1∂x1 + c2∂
(2)
x1 induces a second order derivation on M(V )) if and only if D(x31) = 3c1x

2
1 +

3c2x1 = 0 in M(V ) and ⟨D,x1⟩(x31) = c1x
3
1 + 3c2x

2
1 = 0 in M(V ), thus (c1, c2) = λ1(1,−x1) +

λ2(x1, 0)+λ3(x
2
1, 0)+λ4(0, x

2
1), λi ∈ C, and Der2(M(V )) = C⟨∂x1 −x1∂

(2)
x1 , x1∂x1 , x

2
1∂x1 , x

2
1∂

(2)
x1 ⟩.

Similarly, D = c1∂x1 + c2∂
(2)
x1 + c3∂

(3)
x1 ∈ Der3(M(V )) if and only if D(x31) = 3c1x

2
1 + 3c2x1 +

c3 = 0 in M(V ), ⟨D,x1⟩(x31) = c1x
3
1 + 3c2x

2
1 + 3c3x1 = 0 in M(V ) and ⟨D,x21⟩(x31) = c2x

3
1 +

3c3x
2
1 = 0 in M(V ), thus (c1, c2, c3) = λ1(1, 0,−3x21)+λ2(1,−x1, 0)+λ3(x1, 0, 0)+λ4(x21, 0, 0)+

λ5(0, x
2
1, 0), λi ∈ C, and Der3(M(V )) = C⟨∂x1 − 3x21∂

(3)
x1 , ∂x1 −x1∂

(2)
x1 , x1∂x1 , x

2
1∂x1 , x

2
1∂

(2)
x1 ⟩. D =

c1∂x1 + c2∂
(2)
x1 + c3∂

(3)
x1 + c4∂

(4)
x1 ∈ Der4(M(V )) if and only if D(x31) = 3c1x

2
1 + 3c2x1 + c3 = 0 in

M(V ), ⟨D,x1⟩(x31) = c1x
3
1+3c2x

2
1+3c3x1+c4 = 0 inM(V ), ⟨D,x21⟩(x31) = c2x

3
1+3c3x

2
1+3c4x1 =

0 in M(V ) and ⟨D,x31⟩(x31) = c3x
3
1 + 3c4x

2
1 = 0 in M(V ), solving these four equations in M(V ),

we obtain (c1, c2, c3, c4) = λ1(1, 0,−3x21, 0) + λ2(1,−x1, 0, 0) + λ3(x1, 0, 0, 0) + λ4(x
2
1, 0, 0, 0) +

λ5(0, 1,−3x1, 6x
2
1) + λ6(0, x

2
1, 0, 0), λi ∈ C, and Der4(M(V )) = C⟨∂(2)x1 − 3x1∂

(3)
x1 +6x21∂

(4)
x1 , ∂x1 −

3x21∂
(3)
x1 , ∂x1 − x1∂

(2)
x1 , x1∂x1 , x

2
1∂x1 , x

2
1∂

(2)
x1 ⟩.

Now we have calculated from the first to the 4-th order derivations of M(V ), especially,

we obtain dimDer4(M(V ) = 6 = 3 × 2 = dimM(V ) · (dimM(V ) − 1). Then from Theorem

A, dimDer4(M(V )) = dimDer∞(M(V )), we have Derm(M(V )) = Der4(M(V )), ∀m ≥ 4.

Therefore, we obtain the C-basis for each degree of GrDer(M(V )).

At last, we choose the weights by wt(x1) = 1, wt(xi) = 2, ∀2 ≤ i ≤ n, (V (f), 0) is weighted

homogeneous, then the Hilbert-Poincare series for GrDer(M(V )) is P (t) = 1
t2
+ 2

t +3+2t+ t2.

From the above concrete example, we find that to calculate higher derivations of the moduli

algebra M(V ) of an isolated singularity (V, 0), just by applying Proposition 2.7 to translate the

conditions to several equations in M(V ), and reduced to solving linear equations as M(V ) is

finite dimensional C-vector space. However this workload is too heavy when the singularity is

more complex, so we use the magma programming to help us calculate some examples. Here we

list some calculation results for Ak singularity in the following Table 1.

Table 1: higher derivations of moduli algebras of Ak singu-

larities

symbol moduli algebra

M(V )

each positive degree parts of GrDer(M(V ))

A1 M(V ) = C GrDer(M(V ))m = 0 for m > 0.

A2
M(V ) =

C{x1}/(x21)

GrDer(M(V ))1 = C⟨x1∂x1⟩,
GrDer(M(V ))2 = C⟨x1∂x1 − 2x1∂

2
x1
⟩,

GrDer(M(V ))m = 0 for m > 2.

A3
M(V ) =

C{x1}/(x31)

GrDer(M(V ))1 = C⟨x1∂x1 , x
2
1∂x1⟩,

GrDer(M(V ))2 = C⟨∂x1 − x1∂
(2)
x1 , x

2
1∂

(2)
x1 ⟩,

GrDer(M(V ))3 = C⟨∂x1 − 3x21∂
(3)
x1 ⟩,

GrDer(M(V ))4 = C⟨∂(2)x1 − 3x1∂
(3)
x1 + 6x21∂

(4)
x1 ⟩,



10 ZIDA XIAO, STEPHEN S.-T. YAU, AND HUAIQING ZUO

GrDer(M(V ))m = 0 for m > 4.

GrDer(M(V ))1 = C⟨x1∂x1 , x
2
1∂x1 , x

3
1∂x1⟩,

A4
M(V ) =

C{x1}/(x41)

GrDer(M(V ))2 = C⟨∂x1 − 2
3x1∂

(2)
x1 , x

2
1∂

(2)
x1 , x

3
1∂

(2)
x1 ⟩,

GrDer(M(V ))3 = C⟨∂x1 − x21∂
(3)
x1 , x

3
1∂

(3)
x1 ⟩,

GrDer(M(V ))4 = C⟨∂x1 − 4x31∂
(4)
x1 , ∂

(2)
x1 − 2x1∂

(3)
x1 + 2x21∂

(4)
x1 ⟩,

GrDer(M(V ))5 = C⟨∂(2)x1 − 6x21∂
(4)
x1 + 20x31∂

(5)
x1 ⟩,

GrDer(M(V ))6 = C⟨∂(3)x1 − 4x1∂
(4)
x1 + 10x21∂

(5)
x1 − 20x31∂

(6)
x1 ⟩,

GrDer(M(V ))m = 0 for m > 6.

Proposition 4.4. For general k ≥ 2, the Ak singularity defined by f = xk+1
1 + x22 + · · · + x2n,

whose moduli algebra M(f) = C{x}/(xk) has the following properties:

(1) dimCGrDer(M(f)) = k2.

(2) Derm(M(f))/Derm−1(M(f)) = 0 for all m > 2k − 2.

(3) dimDer2k−2(M(f))/Der2k−3(M(f)) = 1, moreover, Der2k−2(M(f))/Der2k−3(M(f)) is

spanned by ∂
(k−1)
x −

(
k
1

)
x∂

(k)
x +

(
k+1
2

)
x2∂

(k+1)
x − · · ·+ (−1)k−1

(
2k−2
k−1

)
xk−1∂

(2k−2)
x .

Before proving this proposition, we give the following lemma about a combinatorial identity.

Lemma 4.5. Let n ≥ 2 be an integer, then for any 0 ≤ s ≤ n− 1, we have:(
n

s

)(
n− 1

0

)
−
(

n

s+ 1

)(
n

1

)
+

(
n

s+ 2

)(
n+ 1

2

)
+ · · ·+ (−1)n−s

(
n

n

)(
2n− 1− s

n− s

)
= 0.

Proof. This identity has such a combinatorial explanation.

The left hand side can be viewed as the coefficient of the term xn−1 in the polynomial∑n
i=0

(
n
i

)
(x − 1)(n−1−s+i). On the other hand

∑n
i=0

(
n
i

)
(x − 1)(n−1−s+i) = ((x − 1) + 1)n(x −

1)n−1−s = xn(x− 1)n−1−s, the coefficient of the term xn−1 is zero. Hence the identity has been

proved. □

Now we begin to prove the proposition.

Proof. (of Proposition 4.4)

We know thatM(f)⊗CM(f) ≃ C{x, y}/(xk, yk), and the multiplication fromM(f)⊗CM(f)

to M(f) can be viewed as the C-algebra homomorphism ϕ : C{x, y}/(xk, yk) → C{t}/(tk), in
which ϕ(x) = t, ϕ(y) = t. Then we can compute the kernel of ϕ, which is denoted as IM(f).

It is the C-vector space spanned by {xiyj−1 − xi−1yj : 1 ≤ i, j ≤ k − 1, i + j ≤ k} and

{xiyj : 1 ≤ i, j ≤ k − 1, i + j ≥ k}. Moreover, it is a free M(f)-module of rank k − 1, which is

generated by {xyj−1 − yj : 1 ≤ j ≤ k − 1}.
(1) and (2) are implied from the proof of Theorem A. More precisely, as the unique max-

imal ideal of M(f) is (x), and (x)k = 0 in M(f). Then Der∞(M(f) = Der2k−2(M(f))

from Theorem 2.10, and Der2k−2(M(f)) = HomM(f)(IM(f),M(f)) ≃ M(f)k−1 as M(f)-

module. Hence dimDer2k−2(M(f)) = (k − 1)dimM(f) = (k − 1)k, and dimCGrDer(M(f)) =

dimM(f) + dimDer2k−2(M(f)) = k2.

For (3), define D = ∂
(k−1)
x −

(
k
1

)
x∂

(k)
x +

(
k+1
2

)
x2∂

(k+1)
x − · · ·+(−1)k−1

(
2k−2
k−1

)
xk−1∂

(2k−2)
x , from

Proposition 2.7, we know that D ∈ Der2k−2(M(f)) if and only if ⟨D,xs⟩(xk) is equal to 0 in

M(f) for 0 ≤ s ≤ 2k − 3.
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When 0 ≤ s ≤ k − 2, ⟨D,xs⟩ =
∑k−1

i=0 (−1)ixi
(
k−1+i

i

)
∂
(k−1−s+i)
x , so ⟨D,xs⟩(xk) =

∑k−1
i=0 (−1)i ·(

k−1+i
i

)(
k

k−1−s+i

)
xs+1. As 1 ≤ k−1−s ≤ k−1,

∑k−1
i=0 (−1)i

(
k−1+i

i

)(
k

k−1−s+i

)
= 0 from the above

lemma, ⟨D,xs⟩(xk) = 0.

When k − 1 ≤ s ≤ 2k − 3, ⟨D,xs⟩ =
∑k−1

i=s+1−k(−1)ixi
(
k−1+i

i

)
∂
(k−1−s+i)
x , and we can see that

⟨D,xs⟩(xk) ∈ (xk), it must be 0 in M(f).

Now we have checked that D is a derivation of order 2k − 2.

Since D(xk−1) = 1 and D(xi) = 0, ∀0 ≤ i ≤ k − 2. Then for each 0 ≤ j ≤ k − 2,

⟨D,xj⟩(xk−1−j) = 1 and ⟨D,xj⟩(xi) = 0, ∀0 ≤ i ≤ k−2−j. Thus D, ⟨D,x⟩, ⟨D,x2⟩, ..., ⟨D,xk−2⟩
are M(f)-linearly independent in Der2k−2(M(f)), combining with dimDer2k−2(M(f)) = (k −
1)dimM(f) = (k− 1)k we have proved, Der2k−2(M(f)) is just the free M(f)-module generated

by D, ⟨D,x⟩, ⟨D,x2⟩, ..., ⟨D,xk−2⟩, (3) is proved. □

Proposition 4.6. For general k ≥ 2, if we set wt(x1) = 1, and wt(xi) = k+1
2 , 2 ≤ i ≤ n

in the polynomial f = xk+1
1 + x22 + · · · + x2n. Then the Hilbert series for GrDer(M(f)) is

P (t) = 1
tk−1 + 2

tk−2 + · · ·+ k + (k − 1)t+ · · ·+ tk−1.

Proof. DenoteD = ∂
(k−1)
x −

(
k
1

)
x∂

(k)
x +

(
k+1
2

)
x2∂

(k+1)
x −· · ·+(−1)k−1

(
2k−2
k−1

)
xk−1∂

(2k−2)
x as a higher

derivation ofM(f) = C{x}/(xk) from the proof of Proposition 4.4, we know thatDer∞(M(f)) is

the freeM(f)-module of rank k−1 generated byD, ⟨D,x⟩, ⟨D,x2⟩, ..., ⟨D,xk−2⟩, where ⟨D,xs⟩ =∑k−1
i=0 (−1)ixi

(
k−1+i

i

)
∂
(k−1−s+i)
x , 0 ≤ s ≤ k − 2.

Since ⟨D,xs⟩ is a derivation of weight −(k − 1) + s and xj⟨D,xs⟩ is a derivation of weight

−(k − 1) + s + j for 0 ≤ j ≤ k − 1. We know that the dimension of weight i derivations is

the cardinality of the set {(j, s) | 0 ≤ s ≤ k − 2, 0 ≤ j ≤ k − 1,−(k − 1) + s + j = i}, which
equals to k + i when −(k − 1) ≤ i ≤ 0, and equals to k − 1− i when 1 ≤ i ≤ (k − 1). Together

with the basis {1, x, x2, ..., xk−1} of M(f) has weights 0, 1, 2, ..., (k − 1), the Hilbert series for

GrDer(M(f)) is P (t) = 1
tk−1 + 2

tk−2 + · · ·+ k + (k − 1)t+ · · ·+ tk−1. □

4.1.2. The Dk case.

For Dk singularities, we still present some calculation result by magma programming in the

following Table 2 first.

Table 2: higher derivations of moduli algebras of Dk singu-

larities

symbol moduli algebra

M(V )

each positive degree parts of GrDer(M(V ))

D4

M(V ) =

C{x1, x2}/(3x21+
x22, x1x2)

GrDer(M(V ))1 = C⟨x2∂x2 + x1∂x1 , x
2
2∂x2 , x1∂x2 +

1
3x2∂x1 , x

2
2∂x1⟩,

GrDer(M(V ))2 = C⟨∂x2 − x2∂
(2)
x2 − x1∂x1∂x2 − 1

3x2∂
(2)
x1 , x2∂x2 −

2
3x

2
2∂

(2)
x1 , x

2
2∂

(2)
x2 − 1

3x
2
2∂

(2)
x1 , x1∂

(2)
x2 − 1

3∂x1 +
1
3x2∂x1∂x2 +

1
3x1∂

(2)
x1 , x1∂x2 +

1
3x

2
2∂x1∂x2⟩,

GrDer(M(V ))3 = C⟨x2∂(2)x2 − 3x22∂
(3)
x2 − 1

3x2∂
(2)
x1 +

1
3x

2
2∂

(2)
x1 ∂x2 ,

1
3x

2
2∂x1∂

(2)
x2 − 2

3x1∂
(2)
x1 − 1

3x
2
2∂

(3)
x1 + 1

3∂x1 − 1
3x2∂x1∂x2⟩,

GrDer(M(V ))4 = C⟨∂(2)x2 − 3x2∂
(3)
x2 + 6x22∂

(4)
x2 − x1∂x1∂

(2)
x2 − 1

3∂
(2)
x1 +

1
3x2∂

(2)
x1 ∂x2 − 2

3x
2
2∂

(2)
x1 ∂

(2)
x2 + x1∂

(3)
x1 + 2

3x
2
2∂

(4)
x1 ⟩,

GrDer(M(V ))m = 0 for m > 4.

GrDer(M(V ))1 = C⟨x2∂x2 + 2
3x1∂x1 , x

2
2∂x2 , x

2
1∂x2 +

1
4x2∂x1 , x

2
2∂x1 , x

2
1∂x1⟩,
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D5

M(V ) =

C{x1, x2}/(4x31+
x22, x1x2)

GrDer(M(V ))2 = C⟨x2∂x2 + 2
3x

2
1∂

(2)
x1 , x1∂x2 − x21∂x1∂x2 −

1
4x2∂

(2)
x1 , x

2
2∂

(2)
x1 , x2∂x1 − x22∂x1∂x2 , x

2
2∂

(2)
x2 + 1

3x
2
1∂

(2)
x1 , x

2
1∂

(2)
x2 − 1

4∂x1 +
1
4x2∂x1∂x2 +

1
6x1∂

(2)
x1 ⟩,

GrDer(M(V ))3 = C⟨x21∂
(2)
x1 + 3

4x
2
2∂

(3)
x1 , x2∂

(2)
x1 − x22∂

(2)
x1 ∂x2 , x

2
1∂

(2)
x2 +

1
4x

2
2∂x1∂

(2)
x2 − 1

6x1∂
(2)
x1 + 1

4x
2
1∂

(3)
x1 , ∂x2 − 3x2∂

(2)
x2 + 6x22∂

(3)
x2 − x1∂x1∂x2 +

x21∂
(2)
x1 ∂x2 +

1
4x2∂

(3)
x1 ⟩,

GrDer(M(V ))4 = C⟨x1∂(2)x1 − 3x21∂
(3)
x1 − 3

2x
2
2∂

(4)
x1 , x2∂

(2)
x2 − 3x22∂

(3)
x2 −

1
4x2∂

(3)
x1 + 1

4x
2
2∂

(3)
x1 ∂x2 , x1∂

(2)
x2 − x21∂x1∂

(2)
x2 − 1

4∂
(2)
x1 + 1

4x2∂
(2)
x1 ∂x2 −

1
2x

2
2∂

(2)
x1 ∂

(2)
x2 + 1

2x1∂
(3)
x1 − 1

2x
2
1∂

(4)
x1 ⟩,

GrDer(M(V ))5 = C⟨∂(2)x1 − x2∂
(2)
x1 ∂x2 + x22∂

(2)
x1 ∂

(2)
x2 − 3x1∂

(3)
x1 + 6x21∂

(4)
x1 +

5
2x

2
2∂

(5)
x1 ⟩,

GrDer(M(V ))6 = C⟨∂(2)x2 − 3x2∂
(3)
x2 + 6x22∂

(4)
x2 − x1∂x1∂

(2)
x2 + x21∂

(2)
x1 ∂

(2)
x2 −

1
4∂

(3)
x1 + 1

4x2∂
(3)
x1 ∂x2 + x1∂

(4)
x1 − 5

2x
2
1∂

(5)
x1 − 5

4x
2
2∂

(6)
x1 ⟩,

GrDer(M(V ))m = 0 for m > 6.

D6

M(V ) =

C{x1, x2}/(5x41+
x22, x1x2)

GrDer(M(V ))1 = C⟨x2∂x2 + 1
2x1∂x1 , x

2
2∂x2 , x

3
1∂x2 +

1
5x2∂x1 , x

2
2∂x1 , x

2
1∂x1 , x

3
1∂x1⟩,

GrDer(M(V ))2 = C⟨x21∂x2 − x31∂x∂y − 1
5x2∂

(2)
x1 , x

2
2∂

(2)
x2 +

1
6x

2
1∂

(2)
x1 , x

3
1∂

(2)
x2 − 1

5∂x1 +
1
5x2∂x1∂x2 +

1
10x1∂

(2)
x1 , x2∂x1 −x22∂x1∂x2 , x1∂x1 −

2
3x

2
1∂

(2)
x1 , x

2
2∂

(2)
x1 , x

3
1∂

(2)
x1 ⟩,

GrDer(M(V ))3 = C⟨x1∂x2 − x21∂x1∂x2 + x31∂
(2)
x1 ∂x2 + 1

5x2∂
(3)
x1 , ∂x1 −

x2∂x1∂x2 + x22∂x1∂
(2)
x2 − x1∂

(2)
x1 + 1

2x
2
1∂

(3)
x1 , x2∂

(2)
x1 − x22∂

(2)
x1 ∂x2 , x

2
1∂

(2)
x1 −

3
2x

3
1∂

(3)
x1 , x

2
2∂

(3)
x1 ⟩,

GrDer(M(V ))4 = C⟨∂x2 − x2∂
(2)
x2 − x1∂x1∂x2 + x21∂

(2)
x1 ∂x2 − x31∂

(3)
x1 ∂x2 −

1
5x2∂

(4)
x1 , x

2
1∂

(2)
x2 −x31∂x1∂

(2)
x2 − 1

5∂
(2)
x1 + 1

5x2∂
(2)
x1 ∂x2− 2

5x
2
2∂

(2)
x1 ∂

(2)
x2 + 3

10x1∂
(3)
x1 −

1
5x

2
1∂

(4)
x1 , x1∂

(2)
x1 − 2x21∂

(3)
x1 +2x31∂

(4)
x1 , x2∂

(3)
x1 − x22∂

(3)
x1 ∂x2 , x

3
1∂

(3)
x1 + 4

5x
2
2∂

(4)
x1 ⟩,

GrDer(M(V ))5 = C⟨x2∂(2)x2 − 3x22∂
(3)
x2 − 1

5x2∂
(4)
x1 + 1

5x
2
2∂

(4)
x1 ∂x2 , ∂

(2)
x1 −

x2∂
(2)
x1 ∂x2 + x22∂

(2)
x1 ∂

(2)
x2 − 9

4x1∂
(3)
x1 + 3x21∂

(4)
x1 − 5

2x
3
1∂

(5)
x1 , x

2
1∂

(3)
x1 − 4x31∂

(4)
x1 −

2x22∂
(5)
x1 ⟩,

GrDer(M(V ))6 = C⟨x1∂(2)x2 −x21∂x1∂
(2)
x2 +x

3
1∂

(2)
x1 ∂

(2)
x2 − 1

5∂
(3)
x1 +

1
5x2∂

(3)
x1 ∂x2+

3
5x1∂

(4)
x1 − x21∂

(5)
x1 + x31∂

(6)
x1 , x1∂

(3)
x1 − 4x21∂

(4)
x1 + 10x31∂

(5)
x1 + 4x22∂

(6)
x1 ⟩,

GrDer(M(V ))7 = C⟨∂(3)x1 −x2∂(3)x1 ∂x2 +x
2
2∂

(3)
x1 ∂

(2)
x2 −4x1∂

(4)
x1 +10x21∂

(5)
x1 −

20x31∂
(6)
x1 − 7x22∂

(7)
x1 ⟩,

GrDer(M(V ))8 = C⟨∂(2)x2 − 3x2∂
(3)
x2 + 6x22∂

(4)
x2 − x1∂x1∂

(2)
x2 + x21∂

(2)
x1 ∂

(2)
x2 −

x31∂
(3)
x1 ∂

(2)
x2 − 1

5∂
(4)
x1 + 1

5x2∂
(4)
x1 ∂x2− 2

5x
2
2∂

(4)
x1 ∂

(2)
x2 +x1∂

(5)
x1 −3x21∂

(6)
x1 +7x31∂

(7)
x1 +

14
5 x

2
2∂

(8)
x1 ⟩,

GrDer(M(V ))m = 0 for m > 8.

Lemma 4.7. For k ≥ 4, denote D = ∂
(2)
y −3y∂

(3)
y +6y2∂

(4)
y − 1

k−1(
∑k−2

i=0 (−1)i
(
k−2+i

i

)
xi∂

(k−2+i)
x )+∑k−3

i=1 (−1)ixi∂
(i)
x ∂

(2)
y + 1

k−1y∂
(k−2)
x ∂y + ((−1)k−1 − 1) 1

k−1y
2∂

(k−2)
x ∂

(2)
y , we claim that D induces

a (2k − 4)-th order derivation on the C-algebra C{x, y}/((k − 1)xk−2 + y2, xy).
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Proof. We directly check it by using Proposition 2.7, saying that ⟨D,xiyj⟩((k − 1)xk−2 + y2),

⟨D,xiyj⟩(xy) both equal to 0 in C{x, y}/((k− 1)xk−2+ y2, xy), for any i, j ≥ 0. It is easy to see

that ⟨D,xiyj⟩ = 0 when j > 4 or i > 2k− 4, we only need to treat the case for i ≤ 2k− 4, j ≤ 3.

To simplify the notations, remark f1 = (k− 1)xk−2+ y2, f2 = xy, and the following calculations

are all in the algebra C{x, y}/((k − 1)xk−2 + y2, xy).

(1) When i = j = 0, D(f1) = ∂
(2)
y (f1)− 1

k−1∂
(k−2)
x (f1) = 1− 1 = 0; D(f2) = 0.

(2) When 1 ≤ i ≤ k − 3, j = 0, ⟨D,xi⟩(f1) = − 1
k−1(

∑k−2
r=0(−1)r

(
k−2+r

r

)
xr∂

(k−2+r−i)
x (f1)) +

(−1)ixi∂
(2)
y (f1) = −

∑i
r=0(−1)r

(
k−2+r

r

)(
k−2

k−2−i+r

)
xi + (−1)ixi, similar to the trick in

Lemma 3.1, we know that
∑i

r=0(−1)r
(
k−2+r

r

)(
k−2

k−2−i+r

)
is the coefficient of the term xk−2

in ((x− 1) + 1)k−2(x− 1)i, which is (−1)i, thus ⟨D,xi⟩(f1) = 0. And ⟨D,xi⟩(f2) = 0 if

i < k − 3, ⟨D,xk−3⟩(f2) = − 1
k−1∂x(f2) +

1
k−1y∂x∂y(f2) = 0.

(3) When i = k−2, j = 0, ⟨D,xk−2⟩ = − 1
k−1

∑k−2
r=0(−1)r

(
k−2+r

r

)
xr∂

(r)
x + 1

k−1y∂y+((−1)k−1−
1) 1

k−1y
2∂

(2)
y , then ⟨D,xk−2⟩(f1) = − 1

k−1f1 −
∑k−2

r=1(−1)r
(
k−2+r

r

)(
k−2
r

)
xk−2 + 1

k−1 · 2y
2 +

((−1)k−1 − 1) 1
k−1y

2 = (−1)k−1(xk−2 + 1
k−1y

2) = 0, and ⟨D,xk−2⟩(f2) = 0.

(4) When k−1 ≤ i ≤ 2k−4, j = 0, ⟨D,xi⟩ = − 1
k−1

∑k−2
r=i−k+2(−1)r

(
k−2+r

r

)
xr∂

(k−2+r−i)
x , then

⟨D,xi⟩(f1) = −
∑k−2

r=i−k+2(−1)r
(
k−2+r

r

)(
k−2

k−2+r−i

)
xi = 0, as xk−1 = 0 in C{x, y}/((k −

1)xk−2 + y2, xy), and ⟨D,xi⟩(f2) = 0.

(5) When i = 0, j = 1, ⟨D, y⟩ = ∂y − 3y∂
(2)
y + 6y2∂

(3)
y +

∑k−3
r=1(−1)rxr∂

(r)
x ∂y +

1
k−1y∂

(k−2)
x +

((−1)k−1 − 1) 1
k−1y

2∂
(k−2)
x ∂y, then ⟨D, y⟩(f1) = 2y − 3y + y = 0, ⟨D, y⟩(f2) = x− x = 0.

(6) When 1 ≤ i ≤ k−3, j = 1, ⟨D,xiy⟩ =
∑k−3

r=i (−1)rxr∂
(r−i)
x ∂y+

1
k−1y∂

(k−2−i)
x +((−1)k−1−

1) 1
k−1∂

(k−2−i)
x ∂y, then ⟨D,xiy⟩(f1) = 0. And ⟨D,xiy⟩(f2) = (−1)ixi+1+(−1)i+1xi+1 = 0

for i < k − 3, ⟨D,xk−3y⟩(f2) = (−1)k−3xk−2 + 1
k−1y

2 + ((−1)k−1 − 1) 1
k−1y

2 = 0.

(7) When k−2 ≤ i ≤ 2k−4, j = 1, then ⟨D,xiy⟩ = 1
k−1y+((−1)k−1−1) 1

k−1y
2∂y if i = k−2,

and vanishes if i > k − 2. ⟨D,xk−2y⟩(f1) = 0, ⟨D,xk−2y⟩(f2) = 0.

(8) When i = 0, j = 2, ⟨D, y2⟩ = 1 − 3y∂y + 6y2∂
(2)
y +

∑k−3
r=1(−1)rxr∂

(r)
x + ((−1)k−1 −

1) 1
k−1y

2∂
(k−2)
x , then ⟨D, y2⟩(f1) = f1 − 6y2 + 6y2 + (k − 1)

∑k−3
r=1(−1)r

(
k−2
r

)
xk−2 +

((−1)k−1−1)y2 = −(k−1)(1+(−1)k−2)xk−2+((−1)k−1−1)y2 = 0, and ⟨D, y2⟩(f2) = 0.

(9) When i ≥ 1, j = 2, ⟨D,xiy2⟩(f1) = 0, ⟨D,xiy2⟩(f2) = 0.

The rest case of j = 3, 4 is trivial, we omit them.

Therefore, we have checked that D induces a (2k − 4)-th order derivation on C{x, y}/((k −
1)xk−2 + y2, xy). □

Proposition 4.8. For general k ≥ 4, the Dk singularity defined by f = xk−1
1 +x1x

2
2+x

2
3+· · ·+x2n,

whose moduli algebra M(f) ≃ C{x, y}/((k − 1)xk−2 + y2, xy) has the following properties:

(1) dimCGrDer(M(f)) = k2.

(2) Derm(M(f))/Derm−1(M(f)) = 0 for all m > 2k − 4.

(3) dimDer2k−4(M(f))/Der2k−5(M(f)) = 1, moreover, Der2k−4(M(f))/Der2k−5(M(f)) is

spanned by ∂
(2)
y − 3y∂

(3)
y +6y2∂

(4)
y − 1

k−1(
∑k−2

i=0 (−1)i
(
k−2+i

i

)
xi∂

(k−2+i)
x )+

∑k−3
i=1 (−1)ixi∂

(i)
x ∂

(2)
y +

1
k−1y∂

(k−2)
x ∂y + ((−1)k−1 − 1) 1

k−1y
2∂

(k−2)
x ∂

(2)
y .

Proof. We know thatM(f) ≃ C{x, y}/((k−1)xk−2+y2, xy) is a k-dimensional vector space with

1, x, x2, ..., xk−2, y as a basis, so M(f)⊗CM(f) ≃ C{x1, x2, y1, y2}/((k− 1)xk−2
1 + y21, x1y1, (k−

1)xk−2
2 +y22, x2y2). And the multiplication map fromM(f)⊗CM(f) toM(f) can be viewed as the
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C-algebra homomorphism ϕ : C{x1, x2, y1, y2}/((k−1)xk−2
1 + y21, x1y1, (k−1)xk−2

2 + y22, x2y2) →
C{x, y}/((k − 1)xk−2 + y2, xy), in which ϕ(x1) = ϕ(x2) = x, ϕ(y1) = ϕ(y2) = y.

Now we can compute IM(f), which is denoted as the kernel of ϕ. It is the C-vector space

spanned by y1 − y2, x
i
1y2 (1 ≤ i ≤ k − 2), xj2y1 (1 ≤ j ≤ k − 2), xi1x

j−1
2 − xi−1

1 xj2 (1 ≤ i, j ≤
k − 2, i+ j ≤ k − 1), (k − 1)xk−2

1 + y1y2 and xi1x
j
2 (0 ≤ i, j ≤ k − 2, i+ j ≥ k − 1). Moreover, it

is a free M(f)-module of rank k− 1, which is generated by y1 − y2, x1x
j−1
2 − xj2 (1 ≤ j ≤ k− 2).

Then (1) and (2) can be directly implied from the proof of Theorem A, we omit them.

For (3), denote D := ∂
(2)
y − 3y∂

(3)
y + 6y2∂

(4)
y − 1

k−1(
∑k−2

i=0 (−1)i
(
k−2+i

i

)
xi∂

(k−2+i)
x )

+
∑k−3

i=1 (−1)ixi∂
(i)
x ∂

(2)
y + 1

k−1y∂
(k−2)
x ∂y + ((−1)k−1 − 1) 1

k−1y
2∂

(k−2)
x ∂

(2)
y , from the above Lemma

4.7, D is a (2k − 4)-th order derivation on M(f). Moreover, we see that the higher deriva-

tions D, ⟨D,x⟩, ⟨D,x2⟩, ..., ⟨D,xk−3⟩, ⟨D, y⟩ are M(f)-linearly independent in Der∞(M(f)) =

Der2k−4(M(f)). Together with the fact in Theorem A, Der∞(M(f)) is a free M(f)-module of

rank k−1, generated by these k−1 higher derivations. Therefore,Der2k−4(M(f))/Der2k−5(M(f))

is one dimensional, spanned by the higher derivation D. □

Proposition 4.9. For the Dk singularity defined by f = xk−1
1 +x1x

2
2+x

2
3+· · ·+x2n, the following

holds for the Hilbert series P (t) of GrDer(M(f)):

(1)If k is odd and we set wt(x1) = 2, wt(x2) = k − 2, wt(xi) = k − 1,∀3 ≤ i ≤ n, then the

Hilbert series is P (t) = k +
∑k−2

r=1(
k−1−r
t2r

+ 1−(−1)r

tr + (1− (−1)r)tr + (k − 1− r)t2r);

(2)If k is even and we set wt(x1) = 1, wt(x2) =
k−2
2 , wt(xi) =

k−1
2 , ∀3 ≤ i ≤ n, then the Hilbert

series is P (t) = k + 2 +
∑(k−2)/2

r=1 (k−1−2r
t2r

+ k−2r
t2r−1 + 2

tr + 2tr + (k − 2r)t2r−1 + (k − 1− 2r)t2r);

Proof. Just deduce from the fact that Der∞(M(f)) is the free M(f)-module generated by

D, ⟨D,x1⟩, ⟨D,x21⟩, ..., ⟨D,x
k−3
1 ⟩ and ⟨D,x2⟩, D is defined in Lemma 4.7 (identify x1, x2 with

x, y), we omit the details. □

4.1.3. The E6, E7, E8 case.

The E6 singularity is the isolated hypersurface singularity defined by f = x31+x
4
2+x

2
3+· · ·+x2n,

we see that its moduli algebra is the tensor product of those of A2 and A3, then GrDer(M(f)) ≃
GrDer(C{x}/(x2))⊗GrDer(C{x}/(x3)) from Theorem B, and the dimensions of each degrees of

GrDer(M(f)) are 6,7,9,6,5,2,1. If we choose wt(x1) = 4, wt(x2) = 3, and wt(xi) = 6, ∀3 ≤ i ≤ n,

then the Hilbert series for GrDer(M(f)) is P (t) = 1
t10

+ 2
t7

+ 2
t6

+ 3
t4

+ 4
t3

+ 1
t2

+ 2
t + 6 + 2t +

t2 + 4t3 + 3t4 + 2t6 + 2t7 + t10.

The E7 singularity is the isolated hypersurface singularity defined by f = x31+x1x
3
2+x

2
3+· · ·+

x2n, by means of programming, we calculate the dimensions of each degrees of GrDer(M(f)) are

7,8,10,8,7,4,3,1,1. If we choose wt(x1) = 3, wt(x2) = 2, and wt(xi) = 9/2, ∀3 ≤ i ≤ n, then the

Hilbert series for GrDer(M(f)) is P (t) = 1
t8
+ 2

t6
+ 2

t5
+ 3

t4
+ 4

t3
+ 5

t2
+ 4

t + 7 + 4t+ 5t2 + 4t3 +

3t4 + 2t5 + 2t6 + t8.

The E8 singularity is the isolated hypersurface singularity defined by f = x31+x
5
2+x

2
3+· · ·+x2n,

we see that its moduli algebra is the tensor product of those of A2 and A4, then GrDer(M(f)) ≃
GrDer(C{x}/(x2))⊗GrDer(C{x}/(x4)), and the dimensions of each degrees of GrDer(E8) are

8,10,13,10,9,6,5,2,1. If we choose wt(x1) = 5, wt(x2) = 3, and wt(xi) = 15/2, ∀3 ≤ i ≤ n, then

its Hilbert series is P (t) = 1
t14

+ 2
t11

+ 2
t9
+ 3

t8
+ 4

t6
+ 4

t5
+ 1

t4
+ 6

t3
+ 3

t2
+ 2

t + 8 + 2t+ 3t2 + 6t3 +

t4 + 4t5 + 4t6 + 3t8 + 2t9 + 2t11 + t14.

Now we give some conclusions.
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Theorem 4.10. The Conjecture 1.2, 4.1 and 4.2 hold for the simple hypersurface singularity

case.

Proof. It follows from proofs of Proposition 4.4, 4.6, 4.8, 4.9 and our explicit calculations imme-

diately. □

Theorem 4.11. The Conjecture 1.2, 4.1 and 4.2 hold for the case of Brieskorn singularity.

Proof. Let the isolated hypersurface singularity (V (f), 0) be defined by f = xa11 +xa22 + · · ·+xann ,

then its moduli algebraM(f) ≃ C{x1, x2, ..., xn}/(xa1−1
1 , xa2−1

2 , ..., xan−1
n ) ≃

⊗n
i=1C{xi}/(x

ai−1
i ).

So GrDer(M(f)) ≃
⊗n

i=1GrDer(C{xi}/(x
ai−1
i )) from Theorem B. We have verified that the

Conjecture 4.1 and 4.2 hold for Ak singularities, hence hold for M(f) directly from this isomor-

phism. Now let Der2ai−4(C{xi}/(xai−1
i ))/Der2ai−5(C{xi}/(xai−1

i )) = C⟨Di⟩ for each i, then

D0 := ⊗n
i=1Di satisfies the conditions in Conjecture 1.2. □

4.2. The binomial isolated singularities case.

As the binomial singularity only has three types up to analytical equivalence, we will concen-

trate on the binomial singularity (V (f), 0) of types f = xay + yb and f = xay + ybx.

For the isolated hypersurface singularity (V (f), 0) defined by f = xay + yb, we construct

higher derivations of M(f) directly as following.

Proposition 4.12. Remark D1 =
∑2a−2

i=0

∑b−1
j=0(−1)i+j

(
a−2+i

i

)(
b−1+j

j

)
xiyj∂

(a−2+i)
x ∂

(b−1+j)
y , and

D2 =
∑2a−2

i=0

∑b−1
j=0(−1)i+j

(
2a−2+i

i

)
xiyj∂

(2a−2+i)
x ∂

(j)
y , then

(1)D0 := D1 − bD2 induces a higher derivation on M(f) = C{x, y}/(xa−1y, xa + byb−1).

(2)Der∞(M(f)) is a free M(f)-module of rank b(a − 1), moreover, ⟨D0, x
i⟩, 0 ≤ i ≤ a − 1,

and ⟨D0, x
iyj⟩, 0 ≤ i ≤ a− 2, 1 ≤ j ≤ b− 1, i+ j < a+ b− 3, form a basis of it.

For the isolated hypersurface singularity (V (f), 0) defined by f = xay + ybx, we construct

higher derivations of M(f) directly as following.

Proposition 4.13. Remark D1 =
∑2a−2

i=0

∑2b−2
j=0 (−1)i+j

(
a−1+i

i

)(
b−1+j

j

)
xiyj∂

(a−1+i)
x ∂

(b−1+j)
y ,

D2 =
∑2a−2

i=0

∑2b−2
j=0 (−1)i+j

(
2a−2+i

i

)
xiyj∂

(2a−2+i)
x ∂

(j)
y ,

D3 =
∑2a−2

i=0

∑2b−2
j=0 (−1)i+j

(
2b−2+j

j

)
xiyj∂

(i)
x ∂

(2b−2+j)
y , then

(1)D0 := D1− bD2− aD3 induces a higher derivation on M(f) = C{x, y}/(axa−1y+ yb, xa+

bxyb−1).

(2)Der∞(M(f)) is a free M(f)-module of rank ab−1, moreover, ⟨D0, x
iyj⟩, 0 ≤ i ≤ a−1, 0 ≤

j ≤ b− 1, i+ j < a+ b− 2, form a basis of it.

We omit the proofs of the above two propositions, they are just obtained from the calculations

of combinatorial numbers similar as before. And the following theorem is immediately obtained

from Proposition 4.12 and 4.13.

Theorem 4.14. The Conjecture 1.2, 4.1 and 4.2 hold for the binomial singularity case.

4.3. The simple elliptic singularities case.

We check the Conjecture 4.1 and 4.2 for simple elliptic singularities of types Ẽ7 and Ẽ8.

The simple elliptic singularities Ẽ7 is an isolated hypersurface singularity defined by ft =

x4+y4+tx2y2+z2, with t2 ̸= 4. By means of programming, we calculate the dimensions of each

degrees of GrDer(M(ft)) are 9,11,14,13,13,10,8,2,1. If we choose wt(x) = wt(y) = 1, wt(z) = 2,

then the Hilbert series for GrDer(M(ft)) is P (s) =
1
s4
+ 4

s3
+ 10

s2
+ 16

s +19+16s+10s2+4s3+s4.
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The simple elliptic singularities Ẽ8 is an isolated hypersurface singularity defined by ft = x6+

y3+z2+tx4y, with 4t3+27 ̸= 0. By means of programming, we calculate the dimensions of each

degrees of GrDer(M(ft)) are 10,12,15,13,13,10,9,6,5,3,2,1,1. If we choose wt(x) = 1, wt(y) =

2, wt(z) = 3, then the Hilbert series for GrDer(M(ft)) is P (s) =
1
s6

+ 2
s5

+ 5
s4

+ 8
s3

+ 12
s2

+ 14
s +

16 + 14s+ 12s2 + 8s3 + 5s4 + 2s5 + s6.

Theorem 4.15. The Conjecture 4.1 and 4.2 hold for Ẽ7 and Ẽ8 types of simple elliptic singu-

larity case.

5. The inequality conjecture for the case of Binomial singularities

In this section, we prove the inequality Conjecture 1.3 for the binomial singularities case. We

have known that each binomial singularity (V (f), 0) is analytically equivalent to one of these

three cases (2.4): (A)f = xa+yb; (B)f = xay+yb; (C)f = xay+ybx. First, we give the explicit

expression of the function h2(w1, w2, ..., wn) as stated in Conjecture 1.3.

Proposition 5.1. Let (V, 0) be an isolated hypersurface singularity defined by f = xa11 + xa22 +

· · ·+ xann , where a1, a2, ..., an ≥ 2, then

dimDer2(M(V ))/Der1(M(V )) =
n(n+ 1)

2

n∏
i=1

(ai−1)−n
n∑

i=1

∏
k ̸=i

(ak−1)+
∑

1≤i<j≤n

∏
k ̸=i,j

(ak−1).

Proof. Same as the proof of Theorem 4.10, we know that M(V ) ≃
⊗n

i=1C{xi}/(x
ai−1
i ).

For each C{xi}/(xai−1
i ), we have seen in section 4 that Der1(C{xi}/(xai−1

i )) is of dimension

(ai − 2), with a basis xi∂xi , x
2
i ∂xi , ..., x

ai−2
i ∂xi . And Der

2(C{xi}/(xai−1
i ))/Der1(C{xi}/(xai−1

i ))

is of dimension (ai − 2), with a basis ∂xi − 2
ai−2xi∂

(2)
xi , x

2
i ∂

(2)
xi , x

3
i ∂

(2)
xi , ..., x

ai−2
i ∂

(2)
xi .

From Theorem B, we have GrDer(M(V )) ≃
⊗n

i=1GrDer(C{xi}/(x
ai−1
i )), therefore

dimDer2(M(V ))/Der1(M(V )) =
∑

1≤i<j≤n(ai−2)(aj−2)
∏

k ̸=i,j(ak−1)+
∑n

i=1(ai−2)
∏

k ̸=i(ak−
1) = n(n+1)

2

∏n
i=1(ai − 1)− n

∑n
i=1

∏
k ̸=i(ak − 1) +

∑
1≤i<j≤n

∏
k ̸=i,j(ak − 1). □

Definition 5.2. For a1, a2, ..., an ≥ 1, define the function h2(a1, a2, ..., an) to be

h2(a1, ..., an) =
n(n+ 1)

2

n∏
i=1

(ai − 1)− n

n∑
i=1

∏
k ̸=i

(ak − 1) +
∑

1≤i<j≤n

∏
k ̸=i,j

(ak − 1).

Now we begin to calculate dimDer2(M(V ))/Der1(M(V )) for the binomial singularity (V, 0)

of type (B) and type (C).

Proposition 5.3. Let (V (f), 0) be an isolated hypersurface singularity defined by f = xay+ yb,

b ≥ 2, then

dimDer2(M(f))/Der1(M(f)) =


3ab− 4a− 5b+ 10; if a ≥ 2, b ≥ 3,

2a− 2; if a ≥ 2, b = 2,

0; if a = 1.

Proof. Let ∆ := A∂2x + B∂x∂y + C∂2y +D∂x + E∂y be a derivation in Der2(M(f)), where the

coefficients A,B,C,D,E ∈ M(f), since M(f) = C{x, y}/(f, fx, fy) ≃ C{x, y}/(xa−1y, xa +

byb−1), ∆ is nonzero in Der2(M(f))/Der1(M(f)) if and only if A,B,C are not all zero and

∆(xa−1y),∆(xa + byb−1),∆(xay),∆(xa−1y2),∆(xa+1 + bxyb−1),∆(xay + byb) all equal to zero

in M(f).
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(1)When a ≥ 3, b ≥ 4, the following equations hold in M(f),

∆(xa−1y) = (a− 1)(a− 2)xa−3yA+ (a− 1)xa−2B + (a− 1)xa−2yD + xa−1E = 0;

∆(xa + byb−1) = a(a− 1)xa−2A+ b(b− 1)(b− 2)yb−3C + axa−1D + b(b− 1)yb−2E = 0;

∆(xay) = a(a− 1)xa−2yA+ axa−1B + axa−1yD + xaE = 0;

∆(xa−1y2) = (a−1)(a−2)xa−3y2A+2(a−1)xa−2yB+2xa−1C+(a−1)xa−2y2D+2xa−1yE = 0;

∆(xa+1+bxyb−1) = (a+1)axa−1A+b(b−1)yb−2B+b(b−1)(b−2)xyb−3C+((a+1)xa+byb−1)D+

b(b−1)xyb−2E = (a+1)axa−1A+b(b−1)yb−2B+b(b−1)(b−2)xyb−3C+axaD+b(b−1)xyb−2E = 0;

∆(xay + byb) = a(a − 1)xa−2yA + axa−1B + b2(b − 1)yb−2C + axa−1yD + (xa + b2yb−1)E =

a(a− 1)xa−2yA+ axa−1B + b2(b− 1)yb−2C + axa−1yD + b(b− 1)yb−1E = 0.

We know that M(f) is Artinian, and has the monomial basis: xiyj , 0 ≤ i ≤ a− 2, 0 ≤ j ≤ b− 1,

xa−1, its dimension µ(f) = ab − b + 1. Write A :=
∑

0≤i≤a−2,0≤j≤b−1Ai,jx
iyj + Aa−1,0x

a−1,

and express B,C,D,E in the same way, then the above six equalities in M(f) will be turned

into a huge system of linear equations with 5µ(f) variables and 6µ(f) equations. It seems like

the system of linear equations is too huge to start with, however, we can only concentrate on

a certain group of variables at one time, and find all equations containing them. Equivalently

speaking, we decompose Der2(M(f))/Der1(M(f)) into smaller subspaces, each of which is the

nullspace of a smaller system of linear equations.

After reordering the equations following the above idea, the conditions to make ∆ a second

order derivation in Der2(M(f)) are as follows:

a(a− 1)A1,0 + aD0,0 = 0, −(a+ 1)abA1,0 + b(b− 1)B0,1 − abD0,0 = 0;

(a−1)(a−2)A1,k+(a−1)B0,k+1+(a−1)D0,k = 0, (a−1)(a−2)A1,k+2(a−1)B0,k+1+(a−1)D0,k =

0, 0 ≤ k ≤ b− 4;

(a−1)(a−2)A1,b−3+(a−1)B0,b−2+(a−1)D0,b−3 = 0, (a−1)(a−2)A1,b−3+2(a−1)B0,b−2−
2bCa−1,0 + (a− 1)D0,b−3 = 0;

(a− 1)(a− 2)A1,b−2 + (a− 1)B0,b−1 + (a− 1)D0,b−2 − bEa−1,0 = 0;

(a− 1)(a− 2)A0,k = 0, 0 ≤ k ≤ b− 4;

a(a− 1)A0,b−3 + b(b− 1)(b− 2)Ca−2,0 = 0, a(a− 1)A0,b−3 + b2(b− 1)Ca−2,0 = 0;

(a− 1)(a− 2)A0,b−2 − (a− 1)bBa−1,0 − bEa−2,0 = 0, a(a− 1)A0,b−2 + b(b− 1)(b− 2)Ca−2,1 +

b(b − 1)Ea−2,0 = 0, a(a − 1)A0,b−2 − abBa−1,0 − bEa−2,0 = 0, a(a − 1)A0,b−2 − abBa−1,0 +

b2(b− 1)Ca−2,1 + b(b− 1)Ea−2,0 = 0;

a(a− 1)A0,b−1 + b(b− 1)(b− 2)Ca−2,2 − abDa−1,0 + b(b− 1)Ea−2,1 = 0;

−a(a− 1)bAk,0 + b(b− 1)(b− 2)Ck−2,2 − abDk−1,0 + b(b− 1)Ek−2,1 = 0, −(a+1)abAk,0 + b(b−
1)Bk−1,1 + b(b− 1)(b− 2)Ck−2,2 − abDk−1,0 + b(b− 1)Ek−2,1 = 0, 2 ≤ k ≤ a− 1;

B0,0 = 0;

(a− 1)Bk,0 +Ek−1,0 = 0, b(b− 1)(b− 2)Ck−1,1 + b(b− 1)Ek−1,0 = 0, −abBk,0 − bEk−1,0 = 0,

b(b−1)Bk,0+b(b−1)(b−2)Ck−1,1+b(b−1)Ek−1,0 = 0, −abBk,0+b
2(b−1)Ck−1,1+b(b−1)Ek−1,0 =

0, 1 ≤ k ≤ a− 2;

Ck,0 = 0, 0 ≤ k ≤ a− 3.

Since ∆ belongs to Der1(M(f)) if and only if A = B = C = 0 and the above linear equations

hold, we obtain the following basis for Der2(M(f))/Der1(M(f)):

xiyj∂2x, 2 ≤ i ≤ a− 2, 1 ≤ j ≤ b− 1; xyb−1∂2x;

xiyj∂x∂y, 1 ≤ i ≤ a− 2, 2 ≤ j ≤ b− 1; xiyj∂2y , 0 ≤ i ≤ a− 2, 3 ≤ j ≤ b− 1;

xyk∂2x − (a− 2)yk∂x, 1 ≤ k ≤ b− 2;

xyb−3∂2x − (a− 2)yb−2∂x∂y −
(a− 1)(a− 2)

2b
xa−1∂2y ; yb−1∂x∂y − yb−2∂y;
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1

a(a− 1)
yb−2∂2x +

2

ab
xa−1∂x∂y +

1

b(b− 1)
xa−2y∂2y −

1

b
xa−2∂y;

yb−1∂2x +
a− 1

b
xa−1∂x; xk−2y2∂2y + (2− b)xk−2y∂y, 2 ≤ k ≤ a;

(b− 1)xk∂2x + 2axk−1y∂x∂y + a(a− 1)xk−2y∂y, 2 ≤ k ≤ a− 1.

Therefore, dimDer2(M(f))/Der1(M(f)) = (a− 3)(b− 1)+ 1+ (a− 2)(b− 2)+ (a− 1)(b− 3)+

(b− 2) + 4 + (a− 1) + (a− 2) = 3ab− 4a− 5b+ 10.

(2)When a ≥ 3, b = 3, we just need to replace the equation a(a − 1)A1,0 + aD0,0 = 0 by

a(a − 1)A1,0 + b(b − 1)(b − 2)Ca−1,0 + aD0,0 = 0 and replace −(a + 1)abA1,0 + b(b − 1)B0,1 −
abD0,0 = 0 by −(a+ 1)abA1,0 + b(b− 1)B0,1 − b2(b− 1)(b− 2)Ca−1,0 − abD0,0 = 0. A basis for

Der2(M(f))/Der1(M(f)) can be chosen as:

xiyj∂2x, 2 ≤ i ≤ a− 2, 1 ≤ j ≤ 2; xy2∂2x;

xiyj∂x∂y, 1 ≤ i ≤ a− 2, j = 2; x∂2x + ay∂x∂y +
a(a− 1)

6
xa−1∂2y + 2(1− a)∂x;

xy∂2x − (a− 2)y∂x; y2∂x∂y − y1∂y;
1

a(a− 1)
yb−2∂2x +

2

3a
xa−1∂x∂y +

1

6
xa−2y∂2y −

1

3
xa−2∂y;

y2∂2x +
a− 1

3
xa−1∂x; xk−2y2∂2y − xk−2y∂y, 2 ≤ k ≤ a;

2xk∂2x + 2axk−1y∂x∂y + a(a− 1)xk−2y∂y, 2 ≤ k ≤ a− 1.

Therefore, dimDer2(M(f))/Der1(M(f)) = 2(a − 3) + 1 + (a − 2) + 5 + (a − 1) + (a − 2) =

5a− 5 = 3ab− 4a− 5b+ 10.

(3)When a = 2, b ≥ 3, then f = x2y + yb, which is the case of Db+1 singularity, then

from the case of simple hypersurface singularity we have calculated before, we know that

dimDer2(M(f))/Der1(M(f)) = b+ 2 = 3ab− 4a− 5b+ 10.

(4)When b = 2, M(f) ≃ C{x, y}/(xa−1y, xa +2y) ≃ C{x}/(x2a−1), which reduces to the case

of A2a−1 singularity, so dimDer2(M(f))/Der1(M(f)) = 2a− 2.

(5)When a = 1, M(f) ≃ C{x, y}/(y, x+ byb−1) ≃ C, dimDer2(M(f))/Der1(M(f)) = 0.

Now, we have proved the proposition completely. □

Proposition 5.4. Let (V (f), 0) be an isolated hypersurface singularity defined by f = xay+ybx,

where a, b ≥ 2, then

dimDer2(M(f))/Der1(M(f)) =


3ab− 4a− 4b+ 13; if a ≥ 3, b ≥ 3,

2b+ 1; if a = 2,

2a+ 1; if b = 2.

Proof. Let ∆ := A∂2x + B∂x∂y + C∂2y +D∂x + E∂y be a derivation in Der2(M(f)), where the

coefficients A,B,C,D,E ∈M(f), sinceM(f) = C{x, y}/(f, fx, fy) ≃ C{x, y}/(axa−1y+yb, xa+

byb−1x), ∆ is nonzero in Der2(M(f))/Der1(M(f)) if and only if A,B,C are not all zero and

∆(axa−1y+ yb),∆(xa+ byb−1x),∆(axay+ ybx),∆(axa−1y2+ yb+1),∆(xa+1+ byb−1x2),∆(xay+

bybx) all equal to zero in M(f).

(1)When a, b ≥ 3, the following equations hold in M(f),

∆(axa−1y+ yb) = a(a− 1)(a− 2)xa−3yA+ a(a− 1)xa−2B + b(b− 1)yb−2C + a(a− 1)xa−2yD+

(axa−1 + byb−1)E = 0;

∆(xa + byb−1x) = a(a− 1)xa−2A+ b(b− 1)yb−2B+ b(b− 1)(b− 2)yb−3xC + (axa−1 + byb−1)D+

b(b− 1)yb−2xE = 0;

∆(axay + ybx) = a2(a− 1)xa−2yA+ (a2xa−1 + byb−1)B + b(b− 1)yb−2xC + a(a− 1)xa−1yD +
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b(1− a)yb−1xE = 0;

∆(axa−1y2 + yb+1) = a(a− 1)(a− 2)xa−3y2A+ 2a(a− 1)xa−2yB + (2axa−1 + (b+ 1)byb−1)C +

a(a− 1)xa−2y2D + a(1− b)xa−1yE = 0;

∆(xa+1 + byb−1x2) = ((a + 1)axa−1 + 2byb−1)A + 2b(b − 1)yb−2xB + b(b − 1)(b − 2)yb−3x2C +

b(1− a)yb−1xD + b(b− 1)yb−2x2E = 0;

∆(xay + bybx) = a(a − 1)xa−2yA + (axa−1 + b2yb−1)B + b2(b − 1)yb−2xC + a(1 − b)xa−1yD +

b(b− 1)yb−1xE = 0.

(1.1)We do the cases of a, b ≥ 4 first.

Since M(f) is an Artinian algebra with the monomial basis: xiyj , 0 ≤ i ≤ a− 1, 0 ≤ j ≤ b− 1,

we express A :=
∑

0≤i≤a−1,0≤j≤b−1Ai,jx
iyj , similar for B,C,D and E. Then the conditions to

make ∆ a second order derivation in Der2(M(f)) is as the following:

A0,0 = 0;

a(a − 1)(a − 2)A1,0 + a(a − 1)B0,1 + a(a − 1)D0,0 = 0, a(a − 1)A1,0 + aD0,0 = 0, b(b −
1)B0,1 + bD0,0 = 0, a2(a− 1)A1,0 + a(a− b)B0,1 + a(a− 1)D0,0 = 0, a(a− 1)(a− 2)A1,0 +

2a(a − 1)B0,1 + a(a − 1)D0,0 = 0, (2 − (a + 1)a)bA1,0 + 2b(b − 1)B0,1 + (1 − a)bD0,0 = 0,

a(a− 1)A1,0 + a(1− b2)B0,1 + (1− b)aD0,0 = 0;

−a(a− 1)bAk,0 + b(b− 1)Bk−1,1 + b(b− 1)(b− 2)Ck−2,2 + b(1− a)Dk−1,0 + b(b− 1)Ek−2,1 = 0,

(2− (a+1)a)bAk,0 +2b(b− 1)Bk−1,1 + b(b− 1)(b− 2)Ck−2,2 + b(1− a)Dk−1,0 + b(b− 1)Ek−2,1 =

0, 2 ≤ k ≤ a− 2;

−a(a − 1)bAa−1,0 + a(a − 1)A0,b−1 + b(b − 1)Ba−2,1 + b(b − 1)(b − 2)Ca−3,2 + b(1 − a)Da−2,0 +

b(b− 1)Ea−3,1 = 0, (2− (a+1)a)bAa−1,0+(a+1− 2b)aA0,b−1+2b(b− 1)Ba−2,1+ b(b− 1)(b−
2)Ca−3,2 + (1− a)bDa−2,0 + b(b− 1)Ea−3,1 = 0;

a(a − 1)(a − 2)A2,k + a(a − 1)B1,k+1 − ab(b − 1)C0,k+2 + a(a − 1)D1,k + a(1 − b)E0,k+1 = 0,

a(a− 1)(a− 2)A2,k + 2a(a− 1)B1,k+1 + (2− (b+ 1)b)aC0,k+2 + a(a− 1)D1,k + a(1− b)E0,k+1 =

0, 0 ≤ k ≤ b− 2;

a(a − 1)(a − 2)A2,b−3 + a(a − 1)B1,b−2 − ab(b − 1)C0,b−1 + b(b − 1)Ca−1,0 + a(a − 1)D1,b−3 +

a(1− b)E0,b−2 = 0, a(a− 1)(a− 2)A2,b−3 + 2a(a− 1)B1,b−2 + (2− (b+ 1)b)aC0,b−1 + (b+ 1−
2a)bCa−1,0 + a(a− 1)D1,b−3 + a(1− b)E0,b−2 = 0;

a(a− 1)(a− 2)A2,b−2 + a(a− 1)B1,b−1 + b(b− 1)Ca−1,1 + a(a− 1)D1,b−2 + a(1− b)E0,b−1 + b(1−
a)Ea−1,0 = 0;

a(a− 1)(a− 2)A1,k +a(a− 1)B0,k+1+a(a− 1)D0,k = 0, a(a− 1)A1,k −ab(b− 1)B0,k+1+a(1−
b)D0,k = 0, a2(a− 1)A1,k + a(a− b)B0,k+1 + a(a− 1)D0,k = 0, a(a− 1)(a− 2)A1,k +2a(a−
1)B0,k+1 + a(a− 1)D0,k = 0, a(a− 1)A1,k + a(1− b2)B0,k+1 + a(1− b)D0,k = 0, 1 ≤ k ≤ b− 4;

a(a− 1)(a− 2)A1,b−3 + a(a− 1)B0,b−2 + b(b− 1)Ca−2,0 + a(a− 1)D0,b−3 = 0, a(a− 1)A1,b−3 −
ab(b− 1)B0,b−2+ b(b− 1)(b− 2)Ca−2,0+a(1− b)D0,b−3 = 0, a2(a− 1)A1,b−3+a(a− b)B0,b−2+

b(b−1)Ca−2,0+a(a−1)D0,b−3 = 0, a(a−1)(a−2)A1,b−3+2a(a−1)B0,b−2+(b+1−2a)bCa−2,0+

a(a− 1)D0,b−3 = 0, a(a− 1)A1,b−3 + a(1− b2)B0,b−2 + b2(b− 1)Ca−2,0 + a(1− b)D0,b−3 = 0;

a(a − 1)(a − 2)A1,b−2 + a(a − 1)B0,b−1 − a(a − 1)bBa−1,0 + b(b − 1)Ca−2,1 + a(a − 1)D0,b−2 +

b(1− a)Ea−2,0 = 0, a(a− 1)A1,b−2 − ab(b− 1)B0,b−1 + b(b− 1)Ba−1,0 + b(b− 1)(b− 2)Ca−2,1 +

a(1 − b)D0,b−2 + b(b − 1)Ea−2,0 = 0, a2(a − 1)A1,b−2 + a(a − b)B0,b−1 + b(1 − a2)Ba−1,0 +

b(b− 1)Ca−2,1 + a(a− 1)D0,b−2 + b(1− a)Ea−2,0 = 0, a(a− 1)A1,b−2 + a(1− b2)B0,b−1 + b(b−
a)Ba−1,0 + b2(b− 1)Ca−2,1 + a(1− b)D0,b−2 + b(b− 1)Ea−2,0 = 0;

a(a− 1)A1,b−1 + b(b− 1)Ba−1,1 + b(b− 1)(b− 2)Ca−2,2 + a(1− b)D0,b−1 + b(1− a)Da−1,0 + b(b−
1)Ea−2,1 = 0;

A0,k = 0, 1 ≤ k ≤ b− 4;

a(a − 1)(a − 2)A0,b−3 + b(b − 1)Ca−3,0 = 0, a(a − 1)A0,b−3 + b(b − 1)(b − 2)Ca−3,0 = 0,

a2(a − 1)A0,b−3 + b(b − 1)Ca−3,0 = 0, a(a − 1)(a − 2)A0,b−3 + (b + 1 − 2a)bCa−3,0 = 0,



20 ZIDA XIAO, STEPHEN S.-T. YAU, AND HUAIQING ZUO

a(a+ 1− 2b)A0,b−3 + b(b− 1)(b− 2)Ca−3,0 = 0, a(a− 1)A0,b−3 + b2(b− 1)Ca−3,0 = 0;

a(a− 1)(a− 2)A0,b−2−a(a− 1)bBa−2,0+ b(b− 1)Ca−3,1+ b(1−a)Ea−3,0 = 0, a(a− 1)A0,b−2+

b(b− 1)Ba−2,0+ b(b− 1)(b− 2)Ca−3,1+ b(b− 1)Ea−3,0 = 0, a2(a− 1)A0,b−2+ b(1−a2)Ba−2,0+

b(b−1)Ca−3,1+b(1−a)Ea−3,0 = 0, a(a+1−2b)A0,b−2+2b(b−1)Ba−2,0+b(b−1)(b−2)Ca−3,1+

b(b− 1)Ea−3,0 = 0, a(a− 1)A0,b−2 + b(b− a)Ba−2,0 + b2(b− 1)Ca−3,1 + b(b− 1)Ea−3,0 = 0;

......

(We omit the remaining equations, as they can be derived from the symmetry of (x; a;A) and

(y; b;C). Then we can obtain the following basis for Der2(M(f))/Der1(M(f)):

xiyj∂2x, 3 ≤ i ≤ a− 1, 1 ≤ j ≤ b− 1; x2yb−1∂2x;

xiyj∂x∂y, 2 ≤ i ≤ a− 1, 2 ≤ j ≤ b− 1; xiyj∂2y , 1 ≤ i ≤ a− 1, 3 ≤ j ≤ b− 1;

xa−1y2∂2y ;
b− 1

a− 1
x2∂2x + 2xy∂x∂y +

a− 1

b− 1
y2∂2y − x∂x − y∂y;

(b− 1)xk∂2x + 2(a− 1)xk−1y∂x∂y + (a− 1)(a− 2)xk−2y∂y, 3 ≤ k ≤ a− 2;

xk−2y2∂2y + (2− b)xk−2y∂y, 3 ≤ k ≤ a− 2;

(b− 1)xa−1∂2x + (2a− 2)xa−2y∂x∂y + (a− 1)(a− 2)xa−3y∂y;

byb−1∂2x + 2axa−2y∂x∂y + axa−2∂x − 2axa−3y∂y; xa−3y2∂2y + (2− b)xa−3y∂y;

x2yk∂2x + (2− a)xyk∂x, 1 ≤ k ≤ b− 4;

2(b− 1)xyk+1∂x∂y + (a− 1)yk+2∂2y + (b− 1)(b− 2)xyk∂x, 1 ≤ k ≤ b− 4;

x2yb−3∂2x + (2− a)xyb−3∂x; 2bxyb−2∂x∂y + axa−1∂2y − 2bxyb−3∂x + byb−2∂y;

2(b− 1)xyb−2∂x∂y + (a− 1)yb−1∂2y + (b− 1)(b− 2)xyb−3∂x;

x2yb−2∂2x + (2− a)xyb−2∂x; xyb−1∂x∂y − xyb−2∂x; xa−1y∂2y +
b− 1

a− 1
xa−1∂y;

b(b− 1)

a− 1
xyb−3∂2x + 2byb−2∂x∂y + axa−2∂2y − b(b+ 1)yb−3∂x;

1

2a(a− 1)
xyb−2∂2x +

1

a(b− 1)
yb−1∂x∂y +

1

2b(b− 1)
xa−2y∂2y +

b+ 1

2b(b− 1)
xa−2∂y;

1

2a(a− 1)
xyb−2∂2x +

1

(a− 1)b
xa−1∂x∂y +

1

2b(b− 1)
xa−2y∂2y +

a+ 1

2a(a− 1)
yb−2∂x;

xyb−1∂2x +
a− 1

b− 1
yb−1∂x; xa−1y∂x∂y − xa−2y∂y; xa−2y2∂2y + (2− b)xa−2y∂y;

byb−2∂2x + 2axa−2∂x∂y +
a(a− 1)

b− 1
xa−3y∂2y − a(a+ 1)xa−3∂y.

Therefore, dimDer2(M(f))/Der1(M(f)) = (a− 3)(b− 1)+ 1+ (a− 2)(b− 2)+ (a− 1)(b− 3)+

2 + 2(a− 4) + 3 + 2(b− 4) + 13 = 3ab− 4a− 4b+ 13.

(1.2)Next, we consider the cases of a ≥ 4, b = 3. From the above restrictions, only the

equations containing variables A1,0 and A2,0 will be changed.

More explicitly, the equations relating to A1,0 should be enlarged from the above equations

containing A1,b−3 by adding a(a − 1)A1,0 + 6Ca−2,0 + aD0,0 = 0 and 3(2 − a(a + 1))A1,0 +

12B0,1 − 18Ca−2,0 + 3(1 − a)D0,0 = 0. These lead to A1,0 = B0,1 = Ca−2,0 = D0,0 = 0. And

the equations relating to A2,0 should be enlarged from the above equations containing A2,b−3 by

adding equations −3a(a− 1)A2,0 + 6B1,1 + 6C0,2 − 18Ca−1,0 + 3(1− a)D1,0 + 6E0,1 = 0 and

3(2 − a(a + 1))A2,0 + 12B1,1 + 6C0,2 − 18Ca−1,0 + 3(1 − a)D1,0 + 6E0,1 = 0. We will obtain a

2-dimensional subspace of Der2((M(f))/Der1((M(f)), which has a basis x2∂2x+(a−1)xy∂x∂y+
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a(a−1)
6 xa−1∂2y +2(1− a)x∂x, (3(1− a)y2+2axa−1)∂2y +(9a− 3)∂y. Then we obtain the following

basis for Der2(M(f))/Der1(M(f)):

xiyj∂2x, 3 ≤ i ≤ a− 1, 1 ≤ j ≤ 2; x2y2∂2x;

xiy2∂x∂y, 2 ≤ i ≤ a− 1; xa−1y2∂2y ;

2xk∂2x + 2(a− 1)xk−1y∂x∂y + (a− 1)(a− 2)xk−2y∂y, 3 ≤ k ≤ a− 2;

xk−2y2∂2y − xk−2y∂y, 3 ≤ k ≤ a− 2;

2xa−1∂2x + (2a− 2)xa−2y∂x∂y + (a− 1)(a− 2)xa−3y∂y;

3y2∂2x + 2axa−2y∂x∂y + axa−2∂x − 2axa−3y∂y; xa−3y2∂2y − xa−3y∂y;

4xy∂x∂y + (a− 1)y2∂2y + 2x∂x;

x2y∂2x + (2− a)xy∂x; xy2∂x∂y − xy∂x; xa−1y∂2y +
2

a− 1
xa−1∂y;

1

2a(a− 1)
xy∂2x +

1

2a
y2∂x∂y +

1

12
xa−2y∂2y +

1

3
xa−2∂y;

1

2a(a− 1)
xy∂2x +

1

3(a− 1)
xa−1∂x∂y +

1

12
xa−2y∂2y +

a+ 1

2a(a− 1)
y∂x;

xy2∂2x +
a− 1

2
y2∂x; xa−1y∂x∂y − xa−2y∂y; xa−2y2∂2y − xa−2y∂y;

3y∂2x + 2axa−2∂x∂y +
a(a− 1)

2
xa−3y∂2y − a(a+ 1)xa−3∂y;

x2∂2x + (a− 1)xy∂x∂y +
a(a− 1)

6
xa−1∂2y + 2(1− a)x∂x; (3(1− a)y2 + 2axa−1)∂2y + (9a− 3)∂y.

Therefore, dimDer2(M(f))/Der1(M(f)) = 2(a− 3)+1+ (a− 2)+1+2(a− 4)+15 = 5a+1 =

3ab− 4a− 4b+ 13.

(1.3)For the case of a = b = 3, we directly using magma calculated that:

Der2(M(f))/Der1(M(f)) = C⟨∂y − 1
4y∂

2
y − 1

2x∂x∂y − 1
4y∂

2
x,

1
2y

2∂2y + xy∂x∂y + 1
2x

2∂2x, y
3∂2y −

y3∂2x, y
4∂2y ,

1
2x∂

2
y − 2∂x + y∂x∂y + 1

2x∂
2
x, xy∂

2
y + (x2 + y2)∂x∂y + xy∂2x, xy

2∂2y − xy2∂2x, x
2∂2y +

2xy∂x∂y + y2∂2x, y∂x+
1
4(x

2− y2)∂x∂y, x∂x− 1
4(x

2− y2)∂2x, xy∂x+
1
3y

3∂2x, x
2∂x+xy2∂2x, y

3∂x∂y +

3xy2∂2x, y
4∂x∂y, xy

2∂x∂y +
1
3y

3∂2x, y
4∂2x⟩, it is 16-dimensional, satisfies the proposition.

(2)When a = 2, the following equations holds in M(f),

∆(fx) = 2B + b(b− 1)yb−2C + 2yD + (2x+ byb−1)E = 0;

∆(fy) = 2A+ b(b− 1)yb−2B + b(b− 1)(b− 2)yb−3xC + (2x+ byb−1)D + b(b− 1)yb−2xE = 0;

∆(xfx) = 4yA+ (4x+ byb−1)B + b(b− 1)yb−2xC + 2xyD − byb−1xE = 0;

∆(yfx) = 4yB + (4x+ (b+ 1)byb−1)C + 2y2D + 2(1− b)xyE = 0;

∆(xfy) = (6x+2byb−1)A+2b(b−1)yb−2xB+b(b−1)(b−2)yb−3x2C−byb−1xD+b(b−1)yb−2x2E =

0;

∆(yfy) = 2yA+ (2x+ b2yb−1)B + b2(b− 1)yb−2xC + 2(1− b)xyD + b(b− 1)yb−1xE = 0.

(2.1)For the case of b ≥ 3, after some cumbersome calculations similar as above, we obtain

the following basis for Der2(M(f))/Der1(M(f)):

xyk∂2y , 2 ≤ k ≤ b− 1; bxyb−2∂2x + 4x∂x∂y +
2

b− 1
y∂2y + byb−2∂x − 4∂y;

(2b− 1)xyb−1∂2x + (2x+ yb−1)∂x; b(b− 1)2xyb−1∂2x − 2(b− 1)xy∂x∂y + y2∂2y + (b− 2)y∂y;

2(b− 1)xyk∂x∂y + yk+1∂2y + (b− 2)yk∂y, 2 ≤ k ≤ b− 3;

2(b− 1)xyb−2∂x∂y + yb−1∂2y + (2− b)yb−2∂y; bxyb−2∂x∂y + x∂2y −
b(b+ 1)

2
xyb−3∂x;
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b(b− 1)

2
xyb−1∂x∂y − xy∂2y ; xyb−1∂x∂y − xyb−2∂x.

So dimDer2(M(f))/Der1(M(f)) = (b− 2) + 3 + (b− 4) + 4 = 2b+ 1.

(2.2)For the case of a = b = 2, we directly using magma calculated that:

Der2(M(f))/Der1(M(f)) = C⟨∂y + x∂2y + ∂x − 2(x + y)∂x∂y + y∂2x, (2x + y)∂2y + 3∂x − (2x +

4y)∂x∂y + (y− x)∂2x, y
2∂2y − y2∂x∂y + y2∂2x, 2y∂x − 2y2∂x∂y + y2∂2x, 2x∂x + y2∂x∂y − 2y2∂2x⟩, it is

5-dimensional, satisfies the proposition.

Now we have finished the whole proof of the proposition. □

After these tedious calculations, we begin to prove the main Theorem C.

Proof. (of Theorem C) As the binomial singularity (V (f), 0) has only three types up to analytical

equivalence, we only need to treat these three typical cases.

(1)When f = xa + yb, the equality holds just from the definition of h2(a, b), and in this case,

dimDer2(M(V ))/Der1(M(V )) = h2(a, b) = h2(
1
w1
, 1
w2

) = 3ab− 5a− 5b+ 8.

(2)When f = xay+yb, w1 := wt(x) = b−1
ab , w2 := wt(y) = 1

b , and h2(
1
w1
, 1
w2

) = 3( 1
w1

−2)( 1
w2

−
2) + ( 1

w1
− 2) + ( 1

w2
− 2) = 3ab− 5b− 2 ab

b−1 + 8.

If a = 1, then h2(
1
w1
, 1
w2

) = −2b − 2 b
b−1 + 8, and since w1, w2 ≤ 1/2, we must have b = 2, and

h2(
1
w1
, 1
w2

) = 0.

If a ≥ 2, b = 2, then h2(
1
w1
, 1
w2

) = 2a− 2 = dimDer2(M(V ))/Der1(M(V )).

If a ≥ 2, b ≥ 3, from Proposition 5.3, dimDer2(M(V ))/Der1(M(V )) = 3ab − 4a − 5b + 10 ≤
3ab− 5b− 3a+ 8 ≤ 3ab− 5b− 2b

b−1a+ 8 = h2(
1
w1
, 1
w2

).

(3)When f = xay + ybx, w1 := wt(x) = b−1
ab−1 , w2 := wt(y) = a−1

ab−1 , and h2(
1
w1
, 1
w2

) =

3ab− 2a− 2b+ 5− 2(a−1)
b−1 − 2(b−1)

a−1 .

If a = 2, then h2(
1
w1
, 1
w2

) = 2b+3− 2
b−1 , and from Proposition 5.4, dimDer2(M(f))/Der1(M(f)) =

2b+ 1 ≤ h2(
1
w1
, 1
w2

), the case of b = 2 is symmetrical.

If a, b ≥ 3, from Proposition 5.4, dimDer2(M(f))/Der1(M(f)) = 3ab − 4a − 4b + 13, since
2(a−1)
b−1 + 2(b−1)

a−1 ≤ (a − 1) + (b − 1) ≤ 2a + 2b − 8, then dimDer2(M(f))/Der1(M(f)) ≤
h2(

1
w1
, 1
w2

). □

6. An example for the Nakai Conjecture

In section 2, we give a brief statement for Zariski-Lipman Conjecture. It has been shown that

the Nakai Conjecture implies the Zariski-Lipman Conjecture, and both of these two conjectures

can be reduced to the case of isolated singularities [2].

For the case of hypersurface singularities, Singh gave a stronger conjecture [20], which states

that for a k-algebra R = k[x1, ..., xn]/(F ), if Der
2
k(R) is generated by Der1k(R), then R is regular.

Singh’s conjecture for the ring k[x1, x2, ..., xn]/(a1x
m
1 + · · ·+ anx

m
n ) has been checked in [4]. In

this section, we will imitate their method to prove Singh’s conjecture for the case of Brieskorn

singularities.

We fix some notations in this section first. Let k be a field of characteristic zero, remark

S = k[x1, x2, ..., xn] the polynomial ring, F = xa11 + xa22 + · · · + xann , and R = S/(F ) the affine

algebra. Our goal is to show that Der2k(R) can not be generated by Der1k(R).

Lemma 6.1. ([4]) For a weighted homogeneous polynomial f ∈ S of weight type (w1, w2, ..., wn; 1),

denote Dij = fxi∂xj − fxj∂xi the Hamiltonian derivations, and E =
∑n

i=1wixi∂xi the Euler

derivation, then Der1k(S/(f)) is generated by Dij , 1 ≤ i < j ≤ n and E as S/(f)-module.
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Proof. Let D ∈ Der1k(S) such that D(f) = hf , h ∈ S, as E(f) = f , then D − hE ∈ Der1k(S).

So it is no matter to assume D(f) = 0, and we prove that D can be generated by Dij ’s.

Set D =
∑n

i=1 hi∂xi , we have D(f) =
∑n

i=1 hifxi=0, h1fx1 = −
∑n

i=2 hifxi . Because

{fx1 , fx2 , ..., fxn} is a regular sequence, then h1 ∈ (fx2 , fx3 , ..., fxn), let h1 =
∑n

i=2 gifxi , then

D = (
∑n

j=2 gjfxj )∂x1+
∑n

i=2 hi∂xi =
∑n

j=2(−gjD1j)+
∑n

i=2(hi+gif1)∂xi . We continue the same

operator for
∑n

i=2(hi+gif1)∂xi . Finally, we will obtain D = D′+p∂xn , where D
′ is generated by

Dij ’s. D(f) = pfxn = 0, and since fxn is regular in S, p = 0, thus D is generated by Dij ’s. □

Lemma 6.2. ([4]) With notations as above, let d ∈ Der1k(S), D ∈ Der2k(S) satisfying D(F ) ⊂
(F ), d(F ) ⊂ (F ), the following facts hold:

1) d(xi) ∈ Ji = (xa1−1
1 , ..., x

ai−1−1
i−1 , xi, x

ai+1−1
i+1 , ..., xan−1

n ) and d(Ji) ⊂ Ji;

2) d(xiF ) ∈ Ji · (F ) and d(Ji · (F )) ⊂ Ji · (F );
3) If 2 ≤ l ∈ N, then for each j ∈ {1, ..., n}, D(x1x

l
j) ∈ (x1, x

l−1
j ) and D(x1F ) ∈ J1.

Proof. 1) and 2) are just direct computations, we omit them.

For 3), we do induction on l. For l = 2, by the definition of second order derivations, D(x1x
2
j ) =

x1D(x2j ) + 2xjD(x1)− 2x1xjD(xj)− x2jD(x1) ∈ (x1, xj).

Assume 3) holds for l− 1, the for the case of l, we have D(x1x
l
j) = D(x1xjx

l−1
j ) = x1D(xlj)+

xjD(x1x
l−1
j ) + xl−1

j D(x1xj) − x1xjD(xl−1
j ) − x1x

l−1
j D(xj) − xljD(x1). From the induction hy-

pothesis, D(x1x
l−1
j ) ∈ (x1, x

l−2
j ), D(xl−1

j ) ∈ (xl−2
j ), thus D(x1x

l
j) ∈ (x1, x

l−1
j ), and D(x1F ) =∑n

i=1D(x1x
ai
i ) ∈ J1. □

Now we define a special second order derivation of S/(F ), and we prove that it does not

belong to Der1k(S/(F )) +Der1k(S/(F ))Der
1
k(S/(F )).

Definition 6.3. Remark G =
∏n

i=1 x
ai−2
i , we define a second order derivation in Der2(S) as

following,

D0 = (
a1 − 1

a1
−

n∑
j=2

aj − 1

aj
)G∂x1 −

1

a1
x1G∂

2
x1

− 2G
n∑

j=2

xj
aj
∂x1∂xj + xa1−1

1

n∑
j=2

a1G

a2jx
aj−2
j

∂2xj
.

Proposition 6.4. The derivation D0 defined above induces a second order derivation on S/(F ).

Proof. From the Proposition 2.7, we just need to check that D0(F ) ∈ (F ), [D0, xi](F ) ∈
(F ), ∀1 ≤ i ≤ n.

D0(F ) = ((a1−1)xa1−1
1 −

∑n
j=2

a1(aj−1)
aj

xa1−1
1 )G− 1

a1
x1Ga1(a1−1)xa1−2

1 +xa1−1
1

∑n
j=2

a1(aj−1)
aj

G

= 0.

[D0, xj ] = −2G
∑n

j=2
xj

aj
∂x1 + 2xa1−1

1

∑n
j=2

a1G

a2jx
aj−2

j

∂xj for j ≥ 2, then [D0, xj ](F )

= −2G
∑n

j=2
a1
aj
xa1−1
1 xj + 2xa1−1

1

∑n
j=2

a1
aj
xjG = 0.

[D0, x1] = (a1−1
a1

−
∑n

j=2
aj−1
aj

)G− 2
a1
x1G∂x1−2G

∑n
j=2

xj

aj
∂xj = (a1−1

a1
−
∑n

j=2
aj−1
aj

)G−2G ·E,

where E =
∑n

i=1
1
ai
xi∂xi is the Euler derivation, then [D0, x1](F ) = (a1−1

a1
−
∑n

j=2
aj−1
aj

−2)GF ∈
(F ).

Therefore D0 induces a second order derivation on the affine algebra S/(F ). □

Theorem 6.5. For the k-algebra S/(F ) defined above, we have Der2k(S/(F )) ̸= der2k(S/(F )),

where der2k(S/(F )) = Der1k(S/(F )) + Der1k(S/(F ))Der
1
k(S/(F )). In other words, the Nakai

Conjecture holds for the case of Brieskorn singularity.
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Proof. Consider the derivation D0 we have constructed above, from the previous proposition, D0

induces a second order derivation on S/(F ), we still denote it by D0. Assume D0 ∈ der2k(S/(F )),

then D0 = d+
∑
di ◦ d′i + FD in Der2k(S), where d, di, d

′
i ∈ Der1k(S) and D ∈ Der2k(S).

From Lemma 6.2, we know that D0(x1F ) ∈ F · J1, where J1 = (x1, x
a2−1
2 , ...xan−1

n ). However,

from the calculation in the proof of Proposition 6.4, D0(x1F ) = [D0, x1](F ) + x1D0(F ) =

(a1−1
a1

−
∑n

j=2
aj−1
aj

−2)GF , and (a1−1
a1

−
∑n

j=2
aj−1
aj

−2)G does not belong to J1. As F is regular

in S, D0(x1F ) /∈ F · J1, which leads to a contradiction. □

Now we see that Theorem D immediately follows from it.

7. Appendix: Magma program for calculating higher derivations

Here we list the magma code for calculating the third order derivations of M(V ) for E7

singularity (V, 0) = ({x3 + xy3 = 0}, 0). One need to run the program twice: for the second

running, input the result below the dashed line of the first running.

>QQ:=RationalField();

>R < x, y >:= PolynomialRing(QQ,2);

>% change FF

>FF:= x∧3+x*y∧3;
>f1:=Derivative(FF,1,1);

>f2:=Derivative(FF,1,2);

>printf ”f1:= %o;\n” , f1;

>printf ”f2:= %o;\n” , f2;

>printf ”FF:= %o;\n” , FF;

>% change TM: a basis of the moduli algebra

> TM:=[ 1, y, y∧2, y∧3, y∧4, x, x*y];
>rk:=#TM;

>% change m: the order of the higher derivations

>m:=3;

>l:=rk*(Binomial(m+2,2)-1);

>p:=Binomial(m+2,2)-1;

>b:=Matrix(R, m+1,m+1,[<i,j,0>:i,j in [1..m+1]]);

>for i:=0 to m do

> for j:=0 to m do

> if (i+j ne 0 and i+j le m) then

> b[i+1][j+1]:=f1;

> b[i+1][j+1]:=Derivative(b[i+1][j+1],i,1)/Factorial(i);

> b[i+1][j+1]:=Derivative(b[i+1][j+1],j,2)/Factorial(j);

> end if;

> end for;

>end for;

>c:=Matrix(R, m+1,m+1,[<i,j,0>:i,j in [1..m+1]]);

>for i:=0 to m do

> for j:=0 to m do

> if (i+j ne 0 and i+j le m) then

> c[i+1][j+1]:=f2;
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> c[i+1][j+1]:=Derivative(c[i+1][j+1],i,1)/Factorial(i);

> c[i+1][j+1]:=Derivative(c[i+1][j+1],j,2)/Factorial(j);

> end if;

> end for;

>end for;

>”—————————————-”;

>printf ”QQ:=RationalField();\n”;
>printf ”dimA:=%o;\n”, rk;
>printf”m:=%o;\n”,m;

>printf”l:=%o;\n”,l;
>printf”p:=%o;\n”,p;
>printf ”R:= PolynomialRing(QQ,l);\n”;
>printf ”F<”;

>for i:=0 to m do

> for j:=0 to m do

> if (i+j ne 0 and i+j le m) then

> for k:=1 to rk do

> printf”a %o %o %o”,i,j,k;

> if(i ne m or j ne 0 or k ne rk) then

> printf”,”;

> else printf”>”;

> end if;

> end for;

> printf ”\n”;
> end if;

> end for;

>end for;

>printf”:= FieldOfFractions(R); \n”;
>printf ”A<x, y> := AffineAlgebra<F, x, y|\n”;
>printf ”%o,\n%o,\n%o>; \n ”,FF,f1,f2;

>printf ”FF:=%o; \n”,FF;
>printf ”TM:=[”;

>for i:=1 to rk-1 do

>printf ”%o, ”, TM[i];

>end for;

>printf ”%o ];\n”, TM[rk];

>printf”a:=Matrix(A, %o,%o,[<i,j,0>:i,j in [1..%o]]);\n”,p,p,p;
>printf”s:=1;\n”;
>printf”for i:=0 to m do\n”;
>printf” for j:=0 to m do\n”;
>printf” if (i+j ne 0 and i+j le m) then\n”;
>printf” P:=0;\n”;
>printf” for k:=1 to dimA do\n”;
>printf” P:=P+F.s*TM[k];\n”;
>printf” s:=s+1;\n”;
>printf” end for;\n”;
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>printf” a[i+1][j+1]:=P;\n”;
>printf” end if;\n”;
>printf” end for; \n”;
>printf” end for;\n”;

>printf”b:=Matrix(A, m+1,m+1,[<i,j,0>:i,j in [1..m+1]]);\n”;
>printf”c:=Matrix(A, m+1,m+1,[<i,j,0>:i,j in [1..m+1]]);\n”;
>printf”DF1:=Matrix(A, m,m,[<i,j,0>:i,j in [1..m]]);\n”;
>printf”DF2:=Matrix(A, m,m,[<i,j,0>:i,j in [1..m]]);\n”;

>for i:=0 to m do

> for j:=0 to m do

> if (i+j ne 0 and i+j le m) then

> printf ”b[%o][%o]:=%o;\n”, i+1,j+1,b[i+1][j+1];

> end if;

> end for;

>end for;

>for i:=0 to m do

> for j:=0 to m do

> if (i+j ne 0 and i+j le m) then

> printf ”c[%o][%o]:=%o;\n”, i+1,j+1,c[i+1][j+1];

> end if;

> end for;

>end for;

>printf”for u:=0 to m-1 do \n”;
>printf” for v:=0 to m-1 do \n”;
>printf” if (u+v le m-1) then \n”;
>printf” DF1[u+1][v+1]:=0; \n”;
>printf” for i:=0 to m do \n”;
>printf” for j:=0 to m do \n”;
>printf” if (i+j ne 0 and i+j le m) then \n”;
>printf” DF1[u+1][v+1]:=DF1[u+1][v+1]+a[u+i+1][v+j+1]*b[i+1][j+1];\n”;
>printf” end if; \n”;
>printf” end for; \n”;
>printf” end for; \n”;
>printf” end if; \n”;
>printf” end for; \n”;
>printf”end for; \n”;

>printf”for u:=0 to m-1 do \n”;
>printf” for v:=0 to m-1 do \n”;
>printf” if (u+v le m-1) then \n”;
>printf” DF2[u+1][v+1]:=0; \n”;
>printf” for i:=0 to m do \n”;
>printf” for j:=0 to m do \n”;
>printf” if (i+j ne 0 and i+j le m) then \n”;
>printf” DF2[u+1][v+1]:=DF2[u+1][v+1]+a[u+i+1][v+j+1]*c[i+1][j+1];\n”;
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>printf” end if; \n”;
>printf” end for; \n”;
>printf” end for; \n”;
>printf” end if; \n”;
>printf” end for; \n”;
>printf”end for; \n”;

>printf ” V,h:=VectorSpace(A); \n”;

>printf ”T:=[”;

>for i:=1 to l-1 do

>printf ”R.%o,”, i;

>end for;

>printf ”R.%o];\n”, l;

>printf ” LC:=function(a)\n”;
>printf ” return [ MonomialCoefficient(a, TE): TE in T ];\n”;
>printf ” end function;\n”;

>printf ” M:=[];\n”;
>printf ” for u:=0 to m-1 do\n”;
>printf ” for v:=0 to m-1 do\n”;
>printf ” if (u+v le m-1) then \n”;
>printf ” for i in [1 .. dimA] do\n”;
>printf ” L:=(h(DF1[u+1][v+1])[i]); a:=Numerator(L);\n”;
>printf ” Append( M,LC(a));\n”;
>printf ” L:=(h(DF2[u+1][v+1])[i]); a:=Numerator(L);\n”;
>printf ” Append( M,LC(a));\n”;
>printf ” end for;\n”;
>printf ” end if;\n”;
>printf ” end for;\n”;
>printf ” end for;\n”;

>printf ”MM:=Matrix(M);\n”;
>printf ”l-Rank(MM);\n”;
>printf ”N:=NullSpace(Transpose(MM)); \n”;
>printf ”B:=Basis(N);\n”;
>printf ”Rank(N);\n”;
>printf ”B:=Basis(N); \n”;
>printf ”rk:=#B; rk;\n”;

>printf ”RP<x,y>:= PolynomialRing(QQ,2);\n”;

>printf ”TM:=[”;

>for i:=1 to rk-1 do

>printf ”%o, ”, TM[i];

>end for;

>printf ”%o ];\n”, TM[rk];

>printf ”check:=function(a)\n”;
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>printf”Z:=Matrix(RP, %o,%o,[<i,j,0>:i,j in [1..%o]]);\n”,m+1,m+1,m+1;

>r:=1;

>for i:=0 to m do

> for j:=0 to m do

> if (i+j ne 0 and i+j le m) then

>printf ”alpha:= ”;

> for s:=1 to (rk-1) do

>printf ”a[%o]*TM[%o]+”, r, s;

> r:=r+1;

> end for;

>printf ”a[%o]*TM[%o];\n”, r, rk ;

>r:=r+1;

>printf ”Z[%o][%o]:=alpha;\n”,i+1,j+1;

> end if;

> end for;

>end for;

>printf ”return Z;\n”;
>printf ”end function;\n ”;

>printf ” for s:=1 to rk do\n ”;

>printf ” printf \”e %%o &=\”, s;\n”;
>printf ”for i:=0 to (m-1) do\n”;
>printf ” for j:=0 to m do\n”;
>printf ” if (i+j ne 0 and i+j le m) then\n”;
>printf ” if (check(B[s])[i+1][j+1] ne 0) then”;

>printf ” printf \”%%o\\\\partial x ∧(%%o) partial y ∧(%%o) + \”,check(B[s])[i+1][j+1],i,j;\n”;
>printf ” end if;\n”;
>printf ” end if;\n”;
>printf ” end for;\n”;
>printf ”end for;\n”;
>printf” V:=check(B[s])[m+1][1];\n”;

>printf ” printf \”%%o\\\\partial x∧(%%o), \\n \”,check(B[s])[m+1][1],m;\n”;
>printf ” end for;\n”;
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