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ABSTRACT. Calculating the inverse of an automorphism of a formal power series ring presents
a frequent challenge in a myriad of mathematical inquiries, especially in the realm of singularity
theory. In instances involving non-linear and multivariable contexts, S. S. Abhyankar pioneered
a methodology to tackle this problem. However, calculating the expressions up to a certain order
using this method requires calculating higher-order terms and then carry out the selection, which
leads to redundant computations in practice. This article introduces two novel approaches for
determining the inverse of an automorphism of a formal power series ring over an arbitrary
commutative ring with unit, grounded in the newly developed higher order Jacobian matrix
theory. These approaches can be conceived as non-linear extensions of the inverse matrix method
and the Gaussian elimination method respectively. They avoid redundant computations above.
For the two new methods, we also give the application in calculating the explicit expression for
the implicit function theorem.
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1. BACKGROUND

The implicit function theorem is fundamental in many branches of mathematics. In many
cases, we want to get the explicit expression. More generally, for a certain automorphism
of power series ring over an arbitrary commutative ring with unit, we want to calculate the
expression of inverse. The linear terms are clear by the inverse of Jacobian matrix. However,

calculations become difficult for the non-linear terms.
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In this section, we will give a brief overview of the previous method. To present the ideas
more clearly and concisely, we introduce the notations and conventions used in this article.

1.1. Notations and Conventions.

Definition 1.1. We define @ := (21,22, ...,3), ' := (x1,22,...,zy) and " := (21,29, ...,2)
where [,1',1" € N,.

Definition 1.2. For o := (a1,...,o7) € Nl and 3 := (B1,...,3) € N, we define

« L aq ) a9 ) ) (87
(5) . (ﬁl) (52) (51) ' M
Definition 1.3. For a := (ay,...,q;) € N and B := (81,...,3) € N, a < 8 means a; < f3; for
i=1,2,....1.

Definition 1.4. For a := (ay,...,q;) € N', we define a! := a1! - as! - ... - ;! and |a| :=
a1 +ag+ ...+ .

Definition 1.5. For a := (a1,...,q;) € N/, we define z* := H§:1 zi

Definition 1.6. For an r x s matrix M and indexes 1 <'1,12,...,% <rand1 < ji,j2,...,jvr <
s, we define M((flllfzzg') to be the ¢ x ¢’ matrix whose (', s')-th element is equal to (i,/, j¢)-th

element of M for any integer 1 <7’ <tand 1 <s <t
Definition 1.7. In this article, R is defined to be an arbitrary commutative ring with unit.

Definition 1.8. We define A; := (14,024,...,0;;) for 1 <i <[ where d;; (1 < j <) means
Kronecker delta.

Definition 1.9. Assume that £ € N. For ' = ZleNl arz’ with ar’s in R, Jet(®) operates on

the power series in terms of variables & means Jet®) (F) = 32 TeNt: arx!. For the R-algebra
11|<k

homomorphism f : R [[z']] = R [[x]], assume I'm (f) is in R [[y]] where y := (y1,y2,...,y;). For

such f, Jet™®) operates on the power series in terms of variables y means Jet®) (f) is defined by

(Jet(k) (f)) (z;) := Jet™® (f (2;)) (i =1,2,...,1) in terms of variables y. When there is no risk
of ambiguity, we omit the notation for variables for simplicity.

1.2. Previous Researches.
In univariate case, one can apply Newton’s Lemma to get the explicit expression for the

implicit function (or more generally, the inverse of an automorphism of formal power series).

Lemma 1.10 (Newton’s lemma [4]). Let F € C{z,y} and k € N;. Let Y () € C{x} be such
that, for D := %—g(m,?(m)), we have
F(x,Y(x)) € (x)F- (D)2 c C{x}.
Then there exists a Y (x) € C{x} with Y (x) — Y (x) € (x)* - (D) such that F(x,Y (z)) = 0.
To compute the explicit expression of the solution Y (z) € mg (4 of the equation F(x,y) = 0

(with F' € C{z,y} satisfying F[(4)—0 = 0 and %km,y):O # 0, we may use Lemma For

instance, starting with the initial solution Y () (2) = 0, we may set
F (m,Y(j)(m))

YUt () .= YU (z) —
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where j € N. Note that the denominator %—5 (z,YY(x)) is a unit in C {z} as %—5 has a non-zero

constant term, and as Y'U) (z) € (x). Moreover, by Taylor’s expansion, we get

F (w, Y(7+1)(w))

J OF (. F (2,Y0)(x)) F (2, y9(@) \*
—F (x,Y( )(:B)> ~ 5 (a:,y( )(as)> : ( 0 (x)) + h(x) - <%5 (2, Y0(@))

= h(z) - <3F((w 140 (Z))))> 2
for some h (x) € C{x}. Thus,

F (:B,Y(j+1)(w)) € <F (:E,Y(j)(ac))>2,
and for j € N,
F (2, yW(@) e (F <$,Y(O)(m)>>2j c (@) = (x)? - <‘2§(w,y<ﬂ'>(w))>2.
By Newton’s lemma, there exists a Y (x) € C{x} with
Y (@)~ Y9 (@) € ) (G (@0 (@) = (@)

such that F(z,Y (x)) = 0, which implies that the sequence of power series Y0) (z) (j € N), is
formally convergent to Y ().

For instance, we may compute /1 + z — 1 along the above lines: consider F(z,y) := (1 +
y)? — (14 z) = —x + 2y + y%. Then we get YO (z) =0,

z2 2 00 k
W (=2 @2t __4 _r_ T -t
Y@ =5 YWW=5-7"5"3"3 kzo<2> ’

Plugging in, we get F (x, y(® (x)) = 64x4+ higher terms in x. Thus, Newton’s lemma shows

that
2 3

r oz T
V1 —-1l==—-—+—
+x 5 8+16+

is correct up to degree 3.

For the multivariable non-linear cases, S. S. Abhyankar found a method (c.f. [1]).

Theorem 1.11 ([I]). For the field K with char (K) =0 and f € Aut (K[[z]]), one can compute
the expression of f~1 by

Ml (z; - det (Jac(f))-Hé-: (zj — f(x)))
ISCOED DI T ( e ) 3)
IeNt

fori=1,2,...,1.

To determine the inverse up to a specified order using S. S. Abhyankar’s method, one must
calculate higher order terms and then select the relevant lower order terms. This approach leads
to redundant computations in practice.

In this article, we present two novel approaches based on higher order Jacobian matrix theory,
which can be regarded as nonlinear extensions of the inverse matrix method and the Gaussian
elimination method respectively. These approaches concentrate solely on terms of order lower
than or equal to the specified target.
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As a direct application, we use these two methods to obtain the explicit expression for the
implicit function theorem.

Acknowledgements. Zuo is supported by NSFC Grant 12271280 and BJNSF Grant 1252009.
Yau is supported by the Tsinghua University Education Foundation.

2. MAIN RESULTS

2.1. Preliminaries.

We recall some essential results in higher order Jacobian matrix theory developed by S. Fan,
S. S.-T. Yau, and H. Zuo.

2.1.1. Essential Definitions in Higher Order Jacobian Matrixz Theory.

Before we go further, it is necessary to refer to (h)I‘Eg)) which is defined in Definition

(h) o (B)
When R is equal to C, (h)FEfg{)) is indeed ;,(S L in [2]. The definition (h)Fgg)) is introduced to

avoid situations where the denominators are zero.

Definition 2.1 ([3]). Let R € Z", S € Z' and the R-algebra homomorphism h : R [[x']] —
R [[x]]. We define

oI (n((=) 7))
— 2" | ReN and SeN,

=y
N———
>
/N
—
8\
=
N——
>
8
95

_IE.
(h)rgg)) :: Z;%GE,;; (-1) (K

0, otherwise,
(4)

where for a;’s (I € N!) in R we define

I (L jepg o)

2z =Y ((é) - a,-xf—5> | (5)

IeN,
>S5

In particular, (h)FESR)) is equal to 1 when R = (0,0,...,0) and S = (0,0,...,0), and equal to 0
when R = (0,0,...,0) and |S| > 0, or |[R| >0 and S = (0,0,...,0).
Also, for S € Nt, 1 <4 <’ and Al = (5171-,5271-, .. ,51/72-), we have
951 (h(z:))

Qi) _ s
Ty =—— (6)

Remark 2.2 (Taylor expansion for power series over a commutative ring). Under Definition
and the notations in Definition for h € End (R [[z]]) and 1 < i <, one can verify

(Aq)
)= > ("1 lo-2°) (7)
SeNt;
|S|>0

by taking derivatives on both sides.
Definition 2.3 ([3]). Consider the R-algebra homomorphism A : R [[2]] = R [[z]].

(1) For n € N, the matrix TJac,, (h) is a matrix with rows labeled by {a@ € N : 1 < |a| < n}
and columns labeled by {b € N': 1 < |b| < n}. The (a, b)-entry of TJac,, (h) is (h)FEg)).

(2) For i,j € N, the matrix ") A; ; is a matrix with rows labeled by {a € N': |a| = i} and
columns labeled by {b € N': [b] = j}. The (a,b)-entry of " 4;; is Ty,
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The labels are arranged by graded lexicographical order.

Remark 2.4. (h)Am- is the zero matrix in the i > j > 1 case. Therefore, TJac, (h) is block
upper triangular matrix with the canonical partition by (h)Am’s for arbitrary n € Ny and
integers 1 <i,j < n.
2.1.2. Essential Results in Higher Order Jacobian Matriz Theory.

For the matrix expression of the chain rule, we have Theorem

Theorem 2.5 ([3]). For the R-algebra homomorphisms g : R [[x"]] — R[[2]] and h : R [[2]] —
R [[x]], under Definition then

TJac, (hog) = h(TJac,(g)) - TJacy, (h) (8)
for any n € N,

Theorem [2.5] is equivalent to the following Theorem

Theorem 2.6 ([3]). For the R-algebra homomorphisms g : R [[x"]] — R [[]] and h : R [[Z]] —
R[], I € N and J € N, we have

hog)(D _ N\ (h)yp(F)
hep) = 3 (h(<g>p(K)).(>p(J))
KENll;
1< |K|<]J|

under Definition [2.1]

In addition, the following Theorem is also essential in this article.

Theorem 2.7 ([3]). Assume that n € Ny. For the R-algebra homomorphism h : R [[z']] —
R[], J €N and I, I1,I5,...,1I, € N satisfying I = Yoty It, we have

() “ (L)
Wroy= > TI%r) 9)

JieNL V1<t<n; =1
iy i=d

under Definition [2.1].

2.2. Main Results in This Paper.

By Theorem [A] we can calculate the inverse of an automorphism of R [[x]] by taking the
inverse of the higher order Jacobian matrices. It can be regarded as a non-linear extension of
the inverse matrix method.

Theorem A (Non-linear Extension of the Inverse Matrix Method). For f € Aut (R [[x]]), we
give the following algorithm for finding the expression of e := f~1.
Under Definition and equation @, we only need to determine coefficients (e)Fgg)i)\o’s
(i=1,2,...,1, A; e N', S € N and |S| > 0). The coefficients are determined by the equation
1,2, (Pt o1 1.2 Itn)_4
1< b l _ PEPEEED) -
(TJac, (¢) yo)( (7)) = (((TJacq (£))1o) 1)( (7)) (10)

(1,2,...0) (1,2,...0)
which holds for all integers n > 2 under Definition [1.6]

Remark 2.8. For n € Ny, TJac, (f) |o is invertible by the formula
TJacy, (e) o - TJacy, (f) o = TJac, (f) o - TJac, (e) o =T (11)
from Theorem 2.5
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Based on Theorem we also have a non-linear extension of Gaussian elimination method
to compute of the inverse of automorphisms.

Fore, f € Aut (R[[z]]) and 1 < 4,5 <[, we have the Taylor expansion e (2;) = > gcpy (e)Fgﬁ)i)\o-
x and f () = D pent (f)Fgg)j) lo-x’t. Naturally, we may have the following question: ife = f~1,
how can we express (B)Fgg)i)\o’s in terms of (f)]?g%j)]o’s?

In general cases, we present the following Theorem It can be regarded as a non-linear
extension of the Gauss elimination method. The method presented in Theorem [B| is more
efficient than that in Theorem [A] since it avoids calculating the inverse of huge matrix which
requires a large amount of computation.

Theorem B (Non-linear Extension of the Gauss Elimination Method). For f € Aut (R [[z]]),
we give the following algorithm for finding the expression of e := f~1.

Under Definition and equation @, we only need to determine coefficients ()T ( 1)‘0 S
(i=1,2,....,1, A; e N', Se N and |S| > 0).

By Remark. we know that Jet™) (f) is invertible. We introduce g, h € Aut (R [[x]]) defined
by h := (Jet( ) (f))_ of and g:=h"t = floJetl (f) for simplicity. Note that for S, S’ € N/
such that |S| = |S’|, we have

(5" (5 1, S=95,
@Tgy lo = Mg lo = {0 S48 (12)
from Theorem [2.7]
The coefficients (e)I‘Eg)i)\o ’s are determined by the following algorithm.

Step 1: Fori,s =1,2,...,1, we calculate (e)F ]0 s by

Jac (e) o = (Jac (f) o) (13)

For the non-linear parts ()T |g s (SeN,[S]>2,i=1,2,...,1), we let j =2 and do the
following loop algorithm.

Step 2: For all S, S € N satisfying |S| = |S'| = 7, we find one 1 < k' <1 such that Ay < S’

and calculate
(s’ (A /) (S'=A)
T |0— > (“ o T g A |0>. (14)

1<k<l;
AR<S;

Step 3: For all S € N satisfying |S| = j andi=1,2,...,1, we calculate

(Ai) 5’)
Mg o= Y ((f)p =) o - ¢ L) !0)- (15)

S’eNt;
1S"|=j

Step 4: If j > 2, for all S,S" € N! satisfying |S| = j and 2 < |S'| < j, we find one 1 < k' <1
such that Ay < 8" and calculate

(S’ (A /) (s A )
KeN
1<|K|<G=18"]+1;
K<S
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Step 5: For all S € N satisfying |S| =7 and i = 1,2,...,1, we calculate

(&) (&) (8)
Orglo=- 3 ((g)F(S,) o - 1) |0)_ (17)
S’eNt;
1<]87|<j

Step 6: For all S € N satisfying |S| =7 and i = 1,2,...,1, we calculate
1
e)(Ai) ) (i) (Ag)
( )F(S) o = Z (( )ka)lo . (g)r(s)k |0> ' (18)
k=1
Step 7: We increase the value of j by 1, then return to Step 2.

Remark 2.9. From Theorems [A| and [B, we can also know that for f € End(R[[z]]), f €
Aut (R [[z]]) if and only if det (Jac (f) |o) is invertible in R.

In fact, if f € Aut (R [[x]]), we know
det (Jac (f)[o) - det (Jac (f_l) lo) = det (Jac (f_l) lo) - det (Jac (f) [o) = 1, (19)
which implies det (Jac (f) |o) is invertible in R.

If det (Jac (f) o) is invertible in R, we can obtain the expression of e by the same algorithm

as Equations - in Theorem [B| In fact, by Theorems and we have

Jet) (e) = (Jet (1))
h=JetW (e)o f,

(20)
hog=1id,
e=golJeth (e).
It follows that f o e = id, which implies that equation
TJacy, (e) |o - TJac, (f) o =1 (21)
holds for all n € N;. We also note that equation (21)) is equivalent to the equation
TJacy, (f) |o - TJacy, (e) o = 1. (22)

Therefore eo f =id and f is in Aut (R [[z]]).

We give an example for Theorems [A] and [B]in Appendix [A] Also, for more complicated cases,
we give the MATLAB script of Theorems [A] and [B] One can get the expression of the inverse just
by the computer. The complete program list can be found at https://cloud.tsinghua.edu.
cn/d/30647ab11d4848d478dfc/.

2.3. Application: Finding the Explicit Expression for the Implicit Function Theo-
rem.

We give an application of Theorems [A] and [B} finding the explicit expression for the implicit
function theorem. We also extend the application to the formal power series rings over an
arbitrary field K case.

In Theorem we will give a new algorithm using the novel higher order Jacobian matrix
theory. Theorem [D] can be reduced to Theorem [C] in special cases.

We show Theorem [C] first.


https://cloud.tsinghua.edu.cn/d/30647ab11d4848d78dfc/
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Theorem C. Assume that | > 1" and the given homomorphism [ : K[[x']] — K[[z]] satisfies

Of(x1)  9Of(z1) Of (1)
0x1 Oxo T 8ml/
Of(z2)  Of(z2) o Of(z2)
det 8:,“ 89'62 8"",:” lo #0
Of(xyp)  Of(zy) Of (zyr)
o1 Oxa T Oz )

where K is a field. We define y' := (y1,92,...,yr). For the system of equations
f(@i) =y
where i = 1,2,...,l', there exists a K-algebra homomorphism

g: K Hyl]] —-K [[y/,xl/+1,$l/+27 ... ,l‘l”

such that
9 (yi) = =
where i =1,2,...,1.
Consider fy € End (K [[x]]) defined by
N AR i=12,....10,
ﬁ”%%_{ zi,  i=U+1U+2,... .1 (23)

It is easy to see that fy € Aut(K[[x]]). One can determine the coefficients of g (y;) =
f(;l (yi)’s (i=1,2,...,1') in terms of variables y1,Y2, ..., Yy, Ty11, Tyr4o, - .-, x; by either Theo-
rem [4] or [B.

Especially, it is also correct in the case of convergent power series rings over C.

We give an example for Theorem [C]in Appendix [A]

For general cases, we have Theorem

Theorem D. Assume that | > 1" and the homomorphism f : K[[z']] — K[[x]] satisfies

Of(xy)  Of(z1) 9f(21)
o1 Oxo e 8:!21/
Of(@z2)  Of(z2)  Of(z2)
det | O O Py #£0
Of(xy)  Of(zy) Of(x;r)
o1 Oxo e 8:!21/

where K is a field. We define y' := (y1,92,...,yr). For the system of equations (System A)
f(z:)=0

where 1 = 1,2,...,l', there always exists a K-algebra homomorphism

h:K H$/H — K[[$l/+1,$l/+2, R ,CCl]]

such that
h (l’z) = X;

foralli=1,2,...,l.

To obtain the coefficients of h, we may introduce another system of equations (System B)

f (@) = yi

where 1 = 1,2,...,1'. There exists a K-algebra homomorphism

g: K [[y,” - K [[y/7$l’+lawl’+27 s 7xl]]
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such that
9 (i) =
wherei =1,2,...,1" in System B. The coefficients of g (y;)’s (i = 1,2,...,1') in terms of variables
Y1, Y2, -« YU, T 41, Ty 42, . . ., T are determined by Theorem @
Then in System A, for any i =1,2,...,l', the coefficients of h (x;)’s (i = 1,2,...,1') in terms
of variables xyy1,xy42,...,x; are determined by the equation

h (xl) - (g (yl)) |(ylyxl’qu7‘zl’+27"'7x1):(0707"'707zl’+17$l’+27"'7‘zl).

Especially, it is also correct in the case of convergent power series rings over C.

We give an example for Theorem [D]in Appendix [A]

3. PROOF OF THEOREMS [A] -

In this section, we will prove Theorems [A] - [D]
Proof of Theorem [A] It follows immediately from equation . O

For the proof of Theorem [B] we need the following lemma.

Lemma 3.1. Assume that g,h € Aut (R [[z]]) satisfy g = h~! and Jac (h)|o = I. For S € N/
satisfying |S| > 2, and integer 1 <i <1, we have

(a) (a) (")
Dlig o=~ >, ((g) Lish lo- (s ‘0>' (24)
S’eNt;
1<]5'|<]s]

Proof. From Theorem we have

(Aq) (8"
Z ((g)p(s,) o - Mg, ‘0) —0. (25)
S’eNt;
1<18'[<]S]

From Theorem for S, S’ € N! such that |S| = |S’|, we have

(hr(sl)‘ _ [, 5=9,
&) 107 0, §#£49.

Therefore, we prove equation . O

Proof of Theorem [B, Tt follows immediately from Theorems and Lemma, and the
fact that

TJac; (¢~') o = (TJac; (¢) o) " (26)
for all ¢ € Aut (R [[x]]) and j € N, and the relations

b — (Jet(l) (f))_l of = (Jet(l) (e)) o f,
ot (27)

e=h"lo (Jet(l) (f)) =go <Jet(1) (e)) .
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Proof of Theorem[C] By direct calculation,

dfo(z1) dfo(z1) Ofo(x1) O0f(x1) O0f(x1) Of(x1)
Oz Oxo s Ox; Oxy Ox2 T Oxyr
dfo(x2)  Ofo(x2) dfo(z2) Of(x2)  9f(z2) Of (z2)
e e T e
Ofo(z)  Ofo(zi) Ofo(x1) Of(xy)  Of(zy) of (zy)
ox1 Oxo T ox; Ox1 Oxo T Oxyr

Therefore, fy € Aut (K{[z]]).
Consider the K-algebra homomorphism
g0 : K[y, apq1, 2042, ... 2] = K{[z]]
defined by

90(2%’)21% i:1)2)"'7l/7
9o (x;) = x;, i=1U+1,1'+2,...,1

It follows that go = f; ' and we can compute g (y;) = go (y;) = fo3 " (y:)’s (i = 1,2,...

terms of variables y1, 2, ..., Y1, Ty41,Ty42, - - ., 21 by either Theorem [A] or [B]

Proof in the convergent power series rings over C case is similar.
Proof of Theorem [D. By Theorem [C] it is clear.
APPENDIX A. EXAMPLES OF THEOREMS [A] -

We show examples of Theorems [A] - [D] here to better illustrate the algorithms.

Example A.1 (Example of Theorems [A] and [B]). Consider f € Aut (C{x1,x2}) satisfying

f(z1) =21 + 22 + 23,
f(x2) = 21 + 2x2 + 3.

We want to find e := f~!. Under Definition and equation , we only need to determine

(E)Fgﬁf)b’s (i=1,2,A; € N2, S € N2 and |S| > 0) using either Theoremor
With Theorem [A] method, we get

o=y 5

(1 1 0 0 1]
12000
(TJaca (f)) o= |0 0 1 2 1},
001 3 2
00 1 4 4
1 1.0 0100 0 0]
1200010 0 0
0012100 2 2
0013200 1 2
(TJaC3(f))’020014400 0 0,
000O0O0T13 3 1
0000014 5 2
0000015 8 4
0 000016 12 8]
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It follows that
Jac(e) o = ((Jac (f)) o) ' = [21 _11} ;

Tacs (¢) o = (TIacz () lo) = | 0 0 DA
o 0 -2 3 -1
i 0 0 1 -2 1 |

2 -1 -2 4 -2 12 -24 18
-1 1 1 -2 1 -10 18 —12
0 0 4 -4 1 -8 20 -16

o 0 -2 3 -1 4 -—-11 10

TJacs (€)|o = ((TJacs (f) o) '=]0 0 1 -2 1 -2 6 —6
0 0 0 0 ©0 8 —12 6

o o O o o -4 8 -5

0 0 O 0 0 2 -5 4

Lo 0 0 0 o0 -1 3 -3

From the first two rows of the matrices above, we know
) (1,0) e)-(1,0)
[( )Fgl,og|0 ( )F§0,1;|0] _ [ 2 —1}
o) (0,1 o) (0,1 =1_ )
( )1*(1,0)|0 ( )1“(0’1)|0 1 1
e)1-(1,0) ) (1,0) ) (1,0)
[( )r§2’0;|0 ( )1“2171;,0 ( )Fgwgo] [—2 4 —2]
o)1 (0,1 o) (0,1 o)1 (0,1 _ )
( )I‘(270)|0 ( )F(Ll)’O ( )F(o,z)\o 1 2 1

[(@Péijgglo (e)FE;Z?§‘0 (G)F;:g§|0 <e>r§éj§§|o] B [ 12 —24 18 _5]
e s e 0,1 e 0,1 . 0.1 = - 7
( )1“(370)]0 ( )F(z,n\o ( )F(1,2)‘0 ( )r(0’3)|0 10 18 12 3

One can also obtain (G)Fgﬁ)i)]o’s with TheoremE method:
Step 1: The following results are obtained by equation :

e o[22

Origl @Tepl) 711
We let j = 2.
Step 2: The following results are obtained by equation ((14)):
<6>F§§:8§|o <e>r§f:?§\o <e>r§§:8§|o 4 41
(B)I‘g;:égyo (e)rgii%‘o (e)rgéégb = -2 3 -1
(e)F(g:(Q))’O (e)r((l)f)\o (G)F(gﬁ)\o =21

Step 3: The following results are obtained by equation :
(1,0) (1,0) (1,0)
(1 @riy ®r] o2 1
0 0 O0f

1,0
Ez,o;\o ( §|o Eo,zglo
(&L Oy (ol
Step 4: The condition j > 2 does not hold. We skip this step.

2.0)l0 (11)lo (0.2)l0
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Step 5: The following results are obtained by equation :

[(”ngﬁglo (9>F§13(f§lo (g)Fgo 2) !0] [—1 2 —1}
0,1 0,1 01) = :
@”%zmb (mruJﬂO @r lo 0 0 O

Step 6: The following results are obtained by equation (|18)):
1,0 1,0) (1,0
[(e Pg §| (e g 3’0 (e)I‘E %0] _ [_2 4 _2]
( )F(2,0)|0 I‘(1,1)|0 ©r 02)‘0 =21
Step 7: We let j = 3.

Then we return to Step 2.
Step 2: The following results are obtained by equation ((14)):

g o o (o
(e)I‘Eszogb (6)1‘§2:1;|0 (6)1“21:2)|0 (e)FEO:3§|O _ 4 ] -5 1
<e)rE§j§§|o <e)r§ﬁ;|0 (e>rg}:§§yo (@p@%b 5 5 4 -1
OrGol OTohle @Taal ©OTgnh] 12 T

Step 3: The following results are obtained by equation :

(1,0) (1,0) (1,0) (1,0)

(h)FE30;| (W 22 1310 (h)FE“ lo <h>pgo’3§|o] B [0 0 0 o]
0,1 0,1 = .

(- )P(B 0)| (M (2 1)’0 -1

01 1
MWglo Mgl

Step 4: The following results are obtained by equation (|16)):

(2,0 (2,0) 2,0 2,0
(h)Fg3’0§|0 (W1 g ;’0 (h )F§1,2§ g §|0 2 2
1,1 1,1 1,1
& 1“3370;!0 h)Fgm;’O (h)rgl,zg\o E §|o 0 1 -2 1
0,2 02
Mgl MT (2,1)!0 Mrale ¢ F(o 3)|o 0 00
Step 5: The following results are obtained by equation :
1,0 1,0 (1,0
[@Hﬁaﬁb (me1ﬂ0 @MﬁL%b (g)rE ?1 __[2 6 6 _2]
0,1 0,1 0,1 = .
@rGolo @T 21%,0 @1l (g)p(w)‘o -8 12 —6 1

Step 6: The following results are obtained by equation :

| (e)pl% @rt9), @r
SR 1 S O

: ;I ] B [ 12 —24 18 _5]
0,1 . 01 LR =1 ! '
3.0)[0 Clys 2 1)\0 ( )F(1,2)\0 ( )F(073)]0 10 18 12 3
Step 7: We let j = 4.

Then we may return to Step 2 to calculate coefficients of higher order terms.

(1,0) (1,0)

From either of these two methods, we obtain the expression of e = f~! by equation :

JetM (e (1)) = 221 — a2,
Jet®W (e (22)) = —x1 + @2,

Jet@ (e (1)) = 2z1 — g — 222 + dayxy — 223,
Jet® (e (x2)) = —a1 + w9 + 22 — 2wy39 + 2,
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Jet® (e(71)) = 221 — w9 — 223 + 4179 — 273 + 1203 — 242379 + 187123 — b3,
Jet® (e(x9)) = —x1 + w2 + 23 — 2w120 + 23 — 1023 + 182329 — 122123 + 323,

Example A.2 (Example of Theorem . We follow the notations in Theorem [CL Consider the
system of non-linear equations with coefficients in C:

T1+ T2 + 2123 +$§’ = Y1,
{x2 +af =y
Can we express 1 and x5 in terms of variables y1,y2 and x37 If yes, what are the expressions?
In this case, we define the C-algebra homomorphism f : C{x1,z2} — C{z1, z2, z3} by setting
{f (71) := 1 + 29 + 7173 + T3,
f(z2) i= mg + 23,

and know

ox1 Ox2
Therefore we can find 1 and x9 in terms of y1, yo and z3.

8](;(:1:1) 8}(;(11) 11
det | op(ay) of(zy | lo=det <0 1) lo=1#0.

There exists a homomorphism ¢ : C{y1,y2} — C{y1,y2,x3} such that

{g<y1> =1,

g (y2) = w2

In the following part, we calculate the coefficients of g (y1) and ¢ (y2) in terms of variables
Y1, y2 and x3.
We define fy € Aut (C{x1,x2,x3}) by setting

fo (1) == 21 + 22 + 2123 + 73,
fo (x2) == x9 + :E:f,

fo (w3) == 3.

In this example, Jet(®) operates on the power series in terms of variables y1,y2 and x3. By
either Theorem [A] or [B] it follows that

JetW (f5 (1)) = 1 — v,
JetW (f57 (12)) = w2,
Jet™ (fo ! (z3)) = 3,

Jet@ (fo ' (y1)) = y1 — y2 — y123 + yas,

Jet® (fo ' (12)) = vo,

Jet@ (fo ' (x3)) = w3,

Jet® (fo (11)) = y1 — y2 — v1as + yaw3 + ¥ — 3yPy2 + 3y1y3 + yiad — 2y3 — yoa?,
Jet® (fo ' (12)) = y2 — ¥} + 3ydy — 3y1y3 + v,

Jet®) (fo! (z3)) = a3,
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Note that g (y;) = fy ' (y;) for i = 1,2. Therefore, we have

JetW (z1) = Jet® (g (1)) = y1 — o,
Jet® (z2) = Jet™ (g (y2)) = vo,

Jet® (1) = Jet® (g (1)) = y1 — y2 — y1a3 + Yyau3,
Jet® (z9) = Jet® (g (12)) = v2,

Jet® (z1) = Jet® (g (1)) = v1 — v2 — y123 + Yoz + Y3 — 3ydys + 3y1y3 + yiad — 2y5 — youd,
Jet® (z2) = Jet®) (g (y2)) = v2 — v} + 3yy2 — 3y193 + v,

Example A.3 (Example of Theorem @[) We follow the notations in Theorem @ Consider the
system of non-linear equations (System A) with coefficients in C:

sin (71 + x3) + €277 — 1 =0,
271473 | tan (—z3+a3) —1=0.

Can we express 1 and x2 in terms of variable x37 If yes, what are the expressions?

In this case, we add two variables y1,y2 and construct the system of non-linear equations
(System B):

sin (z1 + x3) + e2tel 1 = Y1,
201473 4 tan (—Ig + xi{’) —1=yo.

In System B, we define the C-algebra homomorphism f : C{z1, 22} — C{x1, 29,23} by setting

f(z1) :=sin (21 4 x3) + €®2+75 — 1,
f(@2) = 21775 4 tan (—z3 +23) — 1,

and know

0f@) fm) L
det { oi(iy)  af(ay) | o= det <2 0) o= —2 #0.
81‘1 3$2

Therefore we can express x1 and 9 in terms of y;,y2 and z3 in System B, which implies that
we can express 1 and xo in terms of z3 in System A.

There exists a homomorphism ¢ : C{y1,y2} — C{y1,y2,x3} such that

{g(yn = a1,

g (y2) = w2

In the following part, we calculate the coefficients of g (y1) and g (y2) in terms of variables
Y1,Y2, 3.
We define fy € Aut (C{x1,z2,23}) by setting

fo(z1) :==sin(x + x3) + o2ty 1,
fo (x9) := €21793 4 tan (—a3 + 23) — 1,

fo (z3) == 3.
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In System B, Jet(®) operates on the power series in terms of variables y1,y2 and xz. By either
Theorem [A] or [B] it follows that
Jet™® ( - (yl)) 2y2 + $3,
Jet (fo ' (2)) = v1 — y2 — 3a3,
Jet™ (f5* (x3)) = w3,

Jet® (fo (1)) = 392+ 308 — 30T + 3v1ve + Sunws — Fu3 — fyams — §af,

Jet® (f' (12)) = y1 — 3y2 — Sws + Ju3 + ypws — $a3,
Jet® (f5" (23)) = 3,

Note that g (y;) = fo_l (y;) for i = 1,2. Therefore, in System B, we have

JetW (z1) = JetW (g (1)) = Lyo + a3,
Jet® (a2) = Jet™W (g (y2)) = y1 — Syo — Sa3,
Jet@ (1) = Jet® (g (1)) = sU2 + 573 — 5U7 + 3y1ve + Syi1as — 2y3 — Jyews — g,

Jet@ (z9) = Jet® (g (y2)) = y1 — Syo — Sas3 + Ly + Jypws — 343,

In System A, J et(®) operates on the power series in terms of variable z:3. By setting (y1, y2, r3) =
(0,0,x3) in the above equations in System B, in System A we have

JetW (z1) = JetW (b (21)) = Las,

Jet™ ( )—Jet ) (h(23)) = — 33,
Jet@ (z1) = Jet® (h (21)) = a3 — Yad,
Jet? (z1) = (2)( (962)) — 315 — 343,
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