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Abstract. Calculating the inverse of an automorphism of a formal power series ring presents

a frequent challenge in a myriad of mathematical inquiries, especially in the realm of singularity

theory. In instances involving non-linear and multivariable contexts, S. S. Abhyankar pioneered

a methodology to tackle this problem. However, calculating the expressions up to a certain order

using this method requires calculating higher-order terms and then carry out the selection, which

leads to redundant computations in practice. This article introduces two novel approaches for

determining the inverse of an automorphism of a formal power series ring over an arbitrary

commutative ring with unit, grounded in the newly developed higher order Jacobian matrix

theory. These approaches can be conceived as non-linear extensions of the inverse matrix method

and the Gaussian elimination method respectively. They avoid redundant computations above.

For the two new methods, we also give the application in calculating the explicit expression for

the implicit function theorem.
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1. Background

The implicit function theorem is fundamental in many branches of mathematics. In many

cases, we want to get the explicit expression. More generally, for a certain automorphism

of power series ring over an arbitrary commutative ring with unit, we want to calculate the

expression of inverse. The linear terms are clear by the inverse of Jacobian matrix. However,

calculations become difficult for the non-linear terms.
1
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In this section, we will give a brief overview of the previous method. To present the ideas

more clearly and concisely, we introduce the notations and conventions used in this article.

1.1. Notations and Conventions.

Definition 1.1. We define x := (x1, x2, . . . , xl), x
′ := (x1, x2, . . . , xl′) and x′′ := (x1, x2, . . . , xl′′)

where l, l′, l′′ ∈ N+.

Definition 1.2. For α := (α1, . . . , αl) ∈ Nl and β := (β1, . . . , βl) ∈ Nl, we define(
α

β

)
:=

(
α1

β1

)
·
(
α2

β2

)
· . . . ·

(
αl

βl

)
. (1)

Definition 1.3. For α := (α1, . . . , αl) ∈ Nl and β := (β1, . . . , βl) ∈ Nl, α ≤ β means αi ≤ βi for

i = 1, 2, . . . , l.

Definition 1.4. For α := (α1, . . . , αl) ∈ Nl, we define α! := α1! · α2! · . . . · αl! and |α| :=

α1 + α2 + . . .+ αl.

Definition 1.5. For α := (α1, . . . , αl) ∈ Nl, we define xα :=
∏l

i=1 x
αi
i .

Definition 1.6. For an r×s matrix M and indexes 1 ≤ i1, i2, . . . , it ≤ r and 1 ≤ j1, j2, . . . , jt′ ≤
s, we define M

(j1,j2,...,jt′ )
(i1,i2,...,it)

to be the t× t′ matrix whose (r′, s′)-th element is equal to (ir′ , js′)-th

element of M for any integer 1 ≤ r′ ≤ t and 1 ≤ s′ ≤ t′.

Definition 1.7. In this article, R is defined to be an arbitrary commutative ring with unit.

Definition 1.8. We define ∆i := (δ1,i, δ2,i, . . . , δl,i) for 1 ≤ i ≤ l where δj,i (1 ≤ j ≤ l) means

Kronecker delta.

Definition 1.9. Assume that k ∈ N. For F =
∑

I∈Nl aIx
I with aI ’s in R, Jet(k) operates on

the power series in terms of variables x means Jet(k) (F ) =
∑

I∈Nl;
|I|≤k

aIx
I . For the R-algebra

homomorphism f : R [[x′]] → R [[x]], assume Im (f) is in R [[y]] where y := (y1, y2, . . . , yl). For

such f , Jet(k) operates on the power series in terms of variables y means Jet(k) (f) is defined by(
Jet(k) (f)

)
(xi) := Jet(k) (f (xi)) (i = 1, 2, . . . , l) in terms of variables y. When there is no risk

of ambiguity, we omit the notation for variables for simplicity.

1.2. Previous Researches.

In univariate case, one can apply Newton’s Lemma to get the explicit expression for the

implicit function (or more generally, the inverse of an automorphism of formal power series).

Lemma 1.10 (Newton’s lemma [4]). Let F ∈ C {x, y} and k ∈ N+. Let Y (x) ∈ C {x} be such

that, for D := ∂F
∂y (x, Y (x)), we have

F (x, Y (x)) ∈ ⟨x⟩k · ⟨D⟩2 ⊂ C {x} .

Then there exists a Y (x) ∈ C {x} with Y (x)− Y (x) ∈ ⟨x⟩k · ⟨D⟩ such that F (x, Y (x)) = 0.

To compute the explicit expression of the solution Y (x) ∈ mK⟨x⟩ of the equation F (x, y) = 0

(with F ∈ C {x, y} satisfying F |(x,y)=0 = 0 and ∂F
∂y |(x,y)=0 ̸= 0, we may use Lemma 1.10. For

instance, starting with the initial solution Y (0) (x) = 0, we may set

Y (j+1)(x) := Y (j)(x)−
F
(
x, Y (j)(x)

)
∂F
∂y

(
x, Y (j)(x)

)
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where j ∈ N. Note that the denominator ∂F
∂y

(
x, Y (j)(x)

)
is a unit in C {x} as ∂F

∂y has a non-zero

constant term, and as Y (j) (x) ∈ ⟨x⟩. Moreover, by Taylor’s expansion, we get

F
(
x, Y (j+1)(x)

)
= F

(
x, Y (j)(x)

)
− ∂F

∂y

(
x, Y (j)(x)

)
·
F
(
x, Y (j)(x)

)
∂F
∂y

(
x, Y (j)(x)

) + h(x) ·

(
F
(
x, Y (j)(x)

)
∂F
∂y

(
x, Y (j)(x)

))2

= h(x) ·

(
F
(
x, Y (j)(x)

)
∂F
∂y

(
x, Y (j)(x)

))2

(2)

for some h (x) ∈ C {x}. Thus,

F
(
x, Y (j+1)(x)

)
∈
〈
F
(
x, Y (j)(x)

)〉2
,

and for j ∈ N,

F
(
x, Y (j)(x)

)
∈
〈
F
(
x, Y (0)(x)

)〉2j
⊂ ⟨x⟩2j = ⟨x⟩2j · ⟨∂F

∂y
(x, Y (j)(x))⟩2.

By Newton’s lemma, there exists a Y (x) ∈ C {x} with

Y (x)− Y (j) (x) ∈ ⟨x⟩2j · ⟨∂F
∂y

(x, Y (j)(x))⟩ = ⟨x⟩2j

such that F (x, Y (x)) = 0, which implies that the sequence of power series Y (j) (x) (j ∈ N), is
formally convergent to Y (x).

For instance, we may compute
√
1 + x − 1 along the above lines: consider F (x, y) := (1 +

y)2 − (1 + x) = −x+ 2y + y2. Then we get Y (0) (x) = 0,

Y (1) (x) =
x

2
, Y (2) (x) =

x

2
−

x2

4

x+ 2
=

x

2
− x2

8
·

∞∑
k=0

(
−x

2

)k

, . . .

Plugging in, we get F
(
x, Y (2) (x)

)
= 1

64x
4+ higher terms in x. Thus, Newton’s lemma shows

that
√
1 + x− 1 =

x

2
− x2

8
+

x3

16
+ . . .

is correct up to degree 3.

For the multivariable non-linear cases, S. S. Abhyankar found a method (c.f. [1]).

Theorem 1.11 ([1]). For the field K with char (K) = 0 and f ∈ Aut (K [[x]]), one can compute

the expression of f−1 by

f−1 (xi) =
∑
I∈Nl

 1

I!
·
∂|I|

(
xi · det (Jac (f)) ·

∏l
j=1 (xj − f (xj))

)
∂xI

 (3)

for i = 1, 2, . . . , l.

To determine the inverse up to a specified order using S. S. Abhyankar’s method, one must

calculate higher order terms and then select the relevant lower order terms. This approach leads

to redundant computations in practice.

In this article, we present two novel approaches based on higher order Jacobian matrix theory,

which can be regarded as nonlinear extensions of the inverse matrix method and the Gaussian

elimination method respectively. These approaches concentrate solely on terms of order lower

than or equal to the specified target.
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As a direct application, we use these two methods to obtain the explicit expression for the

implicit function theorem.

Acknowledgements. Zuo is supported by NSFC Grant 12271280 and BJNSF Grant 1252009.

Yau is supported by the Tsinghua University Education Foundation.

2. Main Results

2.1. Preliminaries.

We recall some essential results in higher order Jacobian matrix theory developed by S. Fan,

S. S.-T. Yau, and H. Zuo.

2.1.1. Essential Definitions in Higher Order Jacobian Matrix Theory.

Before we go further, it is necessary to refer to (h)Γ
(R)
(S) which is defined in Definition 2.1.

When R is equal to C, (h)Γ
(R)
(S) is indeed

(h)γ
(R)
(S)

S! in [2]. The definition (h)Γ
(R)
(S) is introduced to

avoid situations where the denominators are zero.

Definition 2.1 ([3]). Let R ∈ Zl′ , S ∈ Zl and the R-algebra homomorphism h : R [[x′]] →
R [[x]]. We define

(h)Γ
(R)

(S) :=


∑

K∈Nl′ ;
K≤R

(−1)|K| ·
(
R

K

)
· h
(
(x′)K

)
·

∂|S|(h((x′)R−K))
∂xS

S!

 , R ∈ Nl′ and S ∈ Nl,

0, otherwise,
(4)

where for aI ’s (I ∈ Nl) in R we define

∂|S|
(∑

I∈Nl aIx
I
)

∂xS

S!
:=

∑
I∈Nl;
I≥S

((
I

S

)
· aIxI−S

)
. (5)

In particular, (h)Γ
(R)
(S) is equal to 1 when R = (0, 0, . . . , 0) and S = (0, 0, . . . , 0), and equal to 0

when R = (0, 0, . . . , 0) and |S| > 0, or |R| > 0 and S = (0, 0, . . . , 0).

Also, for S ∈ Nl, 1 ≤ i ≤ l′ and ∆′
i :=

(
δ1,i, δ2,i, . . . , δl′,i

)
, we have

(h)Γ
(∆i)

(S) =

∂|S|(h(xi))
∂xS

S!
. (6)

Remark 2.2 (Taylor expansion for power series over a commutative ring). Under Definition

1.8 and the notations in Definition 2.1, for h ∈ End (R [[x]]) and 1 ≤ i ≤ l, one can verify

h (xi) =
∑
S∈Nl;
|S|>0

(
(h)Γ

(∆i)

(S) |0 · xS
)

(7)

by taking derivatives on both sides.

Definition 2.3 ([3]). Consider the R-algebra homomorphism h : R [[x′]] → R [[x]].

(1) For n ∈ N+, the matrix TJacn (h) is a matrix with rows labeled by {a ∈ Nl′ : 1 ≤ |a| ≤ n}
and columns labeled by {b ∈ Nl : 1 ≤ |b| ≤ n}. The (a, b)-entry of TJacn (h) is

(h)Γ
(a)
(b) .

(2) For i, j ∈ N, the matrix (h)Ai,j is a matrix with rows labeled by {a ∈ Nl′ : |a| = i} and

columns labeled by {b ∈ Nl : |b| = j}. The (a, b)-entry of (h)Ai,j is (h)Γ
(a)
(b) .
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The labels are arranged by graded lexicographical order.

Remark 2.4. (h)Ai,j is the zero matrix in the i > j ≥ 1 case. Therefore, TJacn (h) is block

upper triangular matrix with the canonical partition by (h)Ai,j ’s for arbitrary n ∈ N+ and

integers 1 ≤ i, j ≤ n.

2.1.2. Essential Results in Higher Order Jacobian Matrix Theory.

For the matrix expression of the chain rule, we have Theorem 2.5.

Theorem 2.5 ([3]). For the R-algebra homomorphisms g : R [[x′′]] → R [[x′]] and h : R [[x′]] →
R [[x]], under Definition 2.3 then

TJacn (h ◦ g) = h (TJacn(g)) · TJacn (h) (8)

for any n ∈ N+.

Theorem 2.5 is equivalent to the following Theorem 2.6.

Theorem 2.6 ([3]). For the R-algebra homomorphisms g : R [[x′′]] → R [[x′]] and h : R [[x′]] →
R [[x]], I ∈ Nl′′ and J ∈ Nl, we have

(h◦g)Γ
(I)

(J) =
∑

K∈Nl′ ;
|I|≤|K|≤|J |

(
h
(
(g)Γ

(I)

(K)

)
· (h)Γ(K)

(J)

)

under Definition 2.1.

In addition, the following Theorem 2.7 is also essential in this article.

Theorem 2.7 ([3]). Assume that n ∈ N+. For the R-algebra homomorphism h : R [[x′]] →
R [[x]], J ∈ Nl and I, I1, I2, . . . , In ∈ Nl′ satisfying I =

∑n
t=1 It, we have

(h)Γ
(I)

(J) =
∑

Jt∈Nl,∀1≤t≤n;∑n
t=1 Jt=J

n∏
i=1

(h)Γ
(Ii)

(Ji) (9)

under Definition 2.1.

2.2. Main Results in This Paper.

By Theorem A, we can calculate the inverse of an automorphism of R [[x]] by taking the

inverse of the higher order Jacobian matrices. It can be regarded as a non-linear extension of

the inverse matrix method.

Theorem A (Non-linear Extension of the Inverse Matrix Method). For f ∈ Aut (R [[x]]), we

give the following algorithm for finding the expression of e := f−1.

Under Definition 1.8 and equation (7), we only need to determine coefficients (e)Γ
(∆i)
(S) |0’s

(i = 1, 2, . . . , l, ∆i ∈ Nl, S ∈ Nl and |S| > 0). The coefficients are determined by the equation

(TJacn (e) |0)

(
1,2,...,

(
l + n

l

)
−1

)
(1,2,...,l) =

(
((TJacn (f)) |0)−1

)(1,2,...,

(
l + n

l

)
−1

)
(1,2,...,l)

(10)

which holds for all integers n ≥ 2 under Definition 1.6.

Remark 2.8. For n ∈ N+, TJacn (f) |0 is invertible by the formula

TJacn (e) |0 · TJacn (f) |0 = TJacn (f) |0 · TJacn (e) |0 = I (11)

from Theorem 2.5.



6 SHUANGHE FAN, STEPHEN S.-T. YAU, AND HUAIQING ZUO

Based on Theorem 2.5, we also have a non-linear extension of Gaussian elimination method

to compute of the inverse of automorphisms.

For e, f ∈ Aut (R [[x]]) and 1 ≤ i, j ≤ l, we have the Taylor expansion e (xi) =
∑

S∈Nl
(e)Γ

(∆i)
(S) |0·

xS and f (xj) =
∑

R∈Nl
(f)Γ

(∆j)

(R) |0·xR. Naturally, we may have the following question: if e = f−1,

how can we express (e)Γ
(∆i)
(S) |0’s in terms of (f)Γ

(∆j)

(R) |0’s?
In general cases, we present the following Theorem B. It can be regarded as a non-linear

extension of the Gauss elimination method. The method presented in Theorem B is more

efficient than that in Theorem A, since it avoids calculating the inverse of huge matrix which

requires a large amount of computation.

Theorem B (Non-linear Extension of the Gauss Elimination Method). For f ∈ Aut (R [[x]]),

we give the following algorithm for finding the expression of e := f−1.

Under Definition 1.8 and equation (7), we only need to determine coefficients (e)Γ
(∆i)
(S) |0’s

(i = 1, 2, . . . , l, ∆i ∈ Nl, S ∈ Nl and |S| > 0).

By Remark 2.8, we know that Jet(1) (f) is invertible. We introduce g, h ∈ Aut (R [[x]]) defined

by h :=
(
Jet(1) (f)

)−1
◦f and g := h−1 = f−1 ◦Jet(1) (f) for simplicity. Note that for S, S′ ∈ Nl

such that |S| = |S′|, we have

(g)Γ
(S′)
(S) |0 = (h)Γ

(S′)
(S) |0 =

{
1, S = S′,

0, S ̸= S′ (12)

from Theorem 2.7.

The coefficients (e)Γ
(∆i)
(S) |0’s are determined by the following algorithm.

Step 1: For i, s = 1, 2, . . . , l, we calculate (e)Γ
(∆i)
(∆s)|0’s by

Jac (e) |0 = (Jac (f) |0)−1. (13)

For the non-linear parts (e)Γ
(∆i)
(S) |0’s (S ∈ Nl, |S| ≥ 2, i = 1, 2, . . . , l), we let j = 2 and do the

following loop algorithm.

Step 2: For all S, S′ ∈ Nl satisfying |S| = |S′| = j, we find one 1 ≤ k′ ≤ l such that ∆k′ ≤ S′

and calculate

(e)Γ
(S′)
(S) |0 =

∑
1≤k≤l;
∆k≤S;

(
(e)Γ

(∆k′ )
(∆k)

|0 · (e)Γ
(S′−∆k′ )
(S−∆k)

|0
)
. (14)

Step 3: For all S ∈ Nl satisfying |S| = j and i = 1, 2, . . . , l, we calculate

(h)Γ
(∆i)

(S) |0 =
∑

S′∈Nl;
|S′|=j

(
(f)Γ

(∆i)

(S′) |0 · (e)Γ
(S′)
(S) |0

)
. (15)

Step 4: If j > 2, for all S, S′ ∈ Nl satisfying |S| = j and 2 ≤ |S′| < j, we find one 1 ≤ k′ ≤ l

such that ∆k′ ≤ S′ and calculate

(h)Γ
(S′)
(S) |0 =

∑
K∈Nl;

1≤|K|≤j−|S′|+1;
K≤S

(
(h)Γ

(∆k′ )
(K) |0 · (h)Γ

(S′−∆k′ )
(S−K) |0

)
. (16)
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Step 5: For all S ∈ Nl satisfying |S| = j and i = 1, 2, . . . , l, we calculate

(g)Γ
(∆i)

(S) |0 = −
∑

S′∈Nl;
1≤|S′|<j

(
(g)Γ

(∆i)

(S′) |0 · (h)Γ
(S′)
(S) |0

)
. (17)

Step 6: For all S ∈ Nl satisfying |S| = j and i = 1, 2, . . . , l, we calculate

(e)Γ
(∆i)

(S) |0 =
l∑

k=1

(
(e)Γ

(∆i)

(∆k)
|0 · (g)Γ

(∆k)

(S) |0
)
. (18)

Step 7: We increase the value of j by 1, then return to Step 2.

Remark 2.9. From Theorems A and B, we can also know that for f ∈ End (R [[x]]), f ∈
Aut (R [[x]]) if and only if det (Jac (f) |0) is invertible in R.

In fact, if f ∈ Aut (R [[x]]), we know

det (Jac (f) |0) · det
(
Jac

(
f−1

)
|0
)
= det

(
Jac

(
f−1

)
|0
)
· det (Jac (f) |0) = 1, (19)

which implies det (Jac (f) |0) is invertible in R.

If det (Jac (f) |0) is invertible in R, we can obtain the expression of e by the same algorithm

as Equations (12) - (18) in Theorem B. In fact, by Theorems 2.6 and 2.7 we have
Jet(1) (e) =

(
Jet(1) (f)

)−1
,

h = Jet(1) (e) ◦ f,
h ◦ g = id,

e = g ◦ Jet(1) (e) .

(20)

It follows that f ◦ e = id, which implies that equation

TJacn (e) |0 · TJacn (f) |0 = I (21)

holds for all n ∈ N+. We also note that equation (21) is equivalent to the equation

TJacn (f) |0 · TJacn (e) |0 = I. (22)

Therefore e ◦ f = id and f is in Aut (R [[x]]).

We give an example for Theorems A and B in Appendix A. Also, for more complicated cases,

we give the Matlab script of Theorems A and B. One can get the expression of the inverse just

by the computer. The complete program list can be found at https://cloud.tsinghua.edu.

cn/d/30647ab11d4848d78dfc/.

2.3. Application: Finding the Explicit Expression for the Implicit Function Theo-

rem.

We give an application of Theorems A and B: finding the explicit expression for the implicit

function theorem. We also extend the application to the formal power series rings over an

arbitrary field K case.

In Theorem D, we will give a new algorithm using the novel higher order Jacobian matrix

theory. Theorem D can be reduced to Theorem C in special cases.

We show Theorem C first.

https://cloud.tsinghua.edu.cn/d/30647ab11d4848d78dfc/
https://cloud.tsinghua.edu.cn/d/30647ab11d4848d78dfc/
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Theorem C. Assume that l ≥ l′ and the given homomorphism f : K [[x′]] → K [[x]] satisfies

det


∂f(x1)
∂x1

∂f(x1)
∂x2

. . . ∂f(x1)
∂xl′

∂f(x2)
∂x1

∂f(x2)
∂x2

. . . ∂f(x2)
∂xl′

...
...

. . .
...

∂f(xl′ )
∂x1

∂f(xl′ )
∂x2

. . .
∂f(xl′ )
∂xl′

 |0 ̸= 0

where K is a field. We define y′ := (y1, y2, . . . , yl′). For the system of equations

f (xi) = yi

where i = 1, 2, . . . , l′, there exists a K-algebra homomorphism

g : K
[[
y′]]→ K

[[
y′, xl′+1, xl′+2, . . . , xl

]]
such that

g (yi) = xi

where i = 1, 2, . . . , l′.

Consider f0 ∈ End (K [[x]]) defined by

f0 (xi) :=

{
f (xi) , i = 1, 2, . . . , l′,

xi, i = l′ + 1, l′ + 2, . . . , l.
(23)

It is easy to see that f0 ∈ Aut (K [[x]]). One can determine the coefficients of g (yi) =

f−1
0 (yi)’s (i = 1, 2, . . . , l′) in terms of variables y1, y2, . . . , yl′ , xl′+1, xl′+2, . . . , xl by either Theo-

rem A or B.

Especially, it is also correct in the case of convergent power series rings over C.

We give an example for Theorem C in Appendix A.

For general cases, we have Theorem D.

Theorem D. Assume that l ≥ l′ and the homomorphism f : K [[x′]] → K [[x]] satisfies

det


∂f(x1)
∂x1

∂f(x1)
∂x2

. . . ∂f(x1)
∂xl′

∂f(x2)
∂x1

∂f(x2)
∂x2

. . . ∂f(x2)
∂xl′

...
...

. . .
...

∂f(xl′ )
∂x1

∂f(xl′ )
∂x2

. . .
∂f(xl′ )
∂xl′

 |0 ̸= 0

where K is a field. We define y′ := (y1, y2, . . . , yl′). For the system of equations (System A)

f (xi) = 0

where i = 1, 2, . . . , l′, there always exists a K-algebra homomorphism

h : K
[[
x′]]→ K [[xl′+1, xl′+2, . . . , xl]]

such that

h (xi) = xi

for all i = 1, 2, . . . , l′.

To obtain the coefficients of h, we may introduce another system of equations (System B)

f (xi) = yi

where i = 1, 2, . . . , l′. There exists a K-algebra homomorphism

g : K
[[
y′]]→ K

[[
y′, xl′+1, xl′+2, . . . , xl

]]
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such that

g (yi) = xi

where i = 1, 2, . . . , l′ in System B. The coefficients of g (yi)’s (i = 1, 2, . . . , l′) in terms of variables

y1, y2, . . . , yl′ , xl′+1, xl′+2, . . . , xl are determined by Theorem C.

Then in System A, for any i = 1, 2, . . . , l′, the coefficients of h (xi)’s (i = 1, 2, . . . , l′) in terms

of variables xl′+1, xl′+2, . . . , xl are determined by the equation

h (xi) = (g (yi)) |(y′,xl′+1,xl′+2,...,xl)=(0,0,...,0,xl′+1,xl′+2,...,xl).

Especially, it is also correct in the case of convergent power series rings over C.

We give an example for Theorem D in Appendix A.

3. Proof of Theorems A - D

In this section, we will prove Theorems A - D.

Proof of Theorem A. It follows immediately from equation (11). □

For the proof of Theorem B, we need the following lemma.

Lemma 3.1. Assume that g, h ∈ Aut (R [[x]]) satisfy g = h−1 and Jac (h) |0 = I. For S ∈ Nl

satisfying |S| ≥ 2, and integer 1 ≤ i ≤ l, we have

(g)Γ
(∆i)

(S) |0 = −
∑

S′∈Nl;
1≤|S′|<|S|

(
(g)Γ

(∆i)

(S′) |0 · (h)Γ
(S′)
(S) |0

)
. (24)

Proof. From Theorem 2.6, we have∑
S′∈Nl;

1≤|S′|≤|S|

(
(g)Γ

(∆i)

(S′) |0 · (h)Γ
(S′)
(S) |0

)
= 0. (25)

From Theorem 2.7, for S, S′ ∈ Nl such that |S| = |S′|, we have

(h)Γ
(S′)
(S) |0 =

{
1, S = S′,

0, S ̸= S′.

Therefore, we prove equation (24). □

Proof of Theorem B. It follows immediately from Theorems 2.6 and 2.7, Lemma 3.1, and the

fact that

TJacj
(
ϕ−1

)
|0 = (TJacj (ϕ) |0)−1 (26)

for all ϕ ∈ Aut (R [[x]]) and j ∈ N+, and the relations
h =

(
Jet(1) (f)

)−1
◦ f =

(
Jet(1) (e)

)
◦ f,

g = h−1,

e = h−1 ◦
(
Jet(1) (f)

)−1
= g ◦

(
Jet(1) (e)

)
.

(27)

□



10 SHUANGHE FAN, STEPHEN S.-T. YAU, AND HUAIQING ZUO

Proof of Theorem C. By direct calculation,

det


∂f0(x1)
∂x1

∂f0(x1)
∂x2

. . . ∂f0(x1)
∂xl

∂f0(x2)
∂x1

∂f0(x2)
∂x2

. . . ∂f0(x2)
∂xl

...
...

. . .
...

∂f0(xl)
∂x1

∂f0(xl)
∂x2

. . . ∂f0(xl)
∂xl

 |0 = det


∂f(x1)
∂x1

∂f(x1)
∂x2

. . . ∂f(x1)
∂xl′

∂f(x2)
∂x1

∂f(x2)
∂x2

. . . ∂f(x2)
∂xl′

...
...

. . .
...

∂f(xl′ )
∂x1

∂f(xl′ )
∂x2

. . .
∂f(xl′ )
∂xl′

 |0 ̸= 0.

Therefore, f0 ∈ Aut (K [[x]]).

Consider the K-algebra homomorphism

g0 : K
[[
y′, xl′+1, xl′+2, . . . , xl

]]
→ K [[x]]

defined by {
g0 (yi) = xi, i = 1, 2, . . . , l′,

g0 (xi) = xi, i = l′ + 1, l′ + 2, . . . , l.
(28)

It follows that g0 = f−1
0 and we can compute g (yi) = g0 (yi) = f−1

0 (yi)’s (i = 1, 2, . . . , l′) in

terms of variables y1, y2, . . . , yl′ , xl′+1, xl′+2, . . . , xl by either Theorem A or B.

Proof in the convergent power series rings over C case is similar. □

Proof of Theorem D. By Theorem C, it is clear. □

Appendix A. Examples of Theorems A - D

We show examples of Theorems A - D here to better illustrate the algorithms.

Example A.1 (Example of Theorems A and B). Consider f ∈ Aut (C {x1, x2}) satisfying{
f (x1) = x1 + x2 + x22,

f (x2) = x1 + 2x2 + x31.

We want to find e := f−1. Under Definition 1.8 and equation (7), we only need to determine
(e)Γ

(∆i)
(S) |0’s (i = 1, 2, ∆i ∈ N2, S ∈ N2 and |S| > 0) using either Theorem A or B.

With Theorem A method, we get

(Jac (f)) |0 =
[
1 1

1 2

]
,

(TJac2 (f)) |0 =


1 1 0 0 1

1 2 0 0 0

0 0 1 2 1

0 0 1 3 2

0 0 1 4 4

 ,

(TJac3 (f)) |0 =



1 1 0 0 1 0 0 0 0

1 2 0 0 0 1 0 0 0

0 0 1 2 1 0 0 2 2

0 0 1 3 2 0 0 1 2

0 0 1 4 4 0 0 0 0

0 0 0 0 0 1 3 3 1

0 0 0 0 0 1 4 5 2

0 0 0 0 0 1 5 8 4

0 0 0 0 0 1 6 12 8


,

. . .
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It follows that

Jac (e) |0 = ((Jac (f)) |0)−1 =

[
2 −1

−1 1

]
,

TJac2 (e) |0 = ((TJac2 (f)) |0)−1 =


2 −1 −2 4 −2

−1 1 1 −2 1

0 0 4 −4 1

0 0 −2 3 −1

0 0 1 −2 1

 ,

TJac3 (e) |0 = ((TJac3 (f)) |0)−1 =



2 −1 −2 4 −2 12 −24 18 −5

−1 1 1 −2 1 −10 18 −12 3

0 0 4 −4 1 −8 20 −16 4

0 0 −2 3 −1 4 −11 10 −3

0 0 1 −2 1 −2 6 −6 2

0 0 0 0 0 8 −12 6 −1

0 0 0 0 0 −4 8 −5 1

0 0 0 0 0 2 −5 4 −1

0 0 0 0 0 −1 3 −3 1


.

. . .

From the first two rows of the matrices above, we know[
(e)Γ

(1,0)
(1,0)|0 (e)Γ

(1,0)
(0,1)|0

(e)Γ
(0,1)
(1,0)|0 (e)Γ

(0,1)
(0,1)|0

]
=

[
2 −1

−1 1

]
,

[
(e)Γ

(1,0)
(2,0)|0 (e)Γ

(1,0)
(1,1)|0 (e)Γ

(1,0)
(0,2)|0

(e)Γ
(0,1)
(2,0)|0 (e)Γ

(0,1)
(1,1)|0 (e)Γ

(0,1)
(0,2)|0

]
=

[
−2 4 −2

1 −2 1

]
,

[
(e)Γ

(1,0)
(3,0)|0 (e)Γ

(1,0)
(2,1)|0 (e)Γ

(1,0)
(1,2)|0 (e)Γ

(1,0)
(0,3)|0

(e)Γ
(0,1)
(3,0)|0 (e)Γ

(0,1)
(2,1)|0 (e)Γ

(0,1)
(1,2)|0 (e)Γ

(0,1)
(0,3)|0

]
=

[
12 −24 18 −5

−10 18 −12 3

]
,

. . .

One can also obtain (e)Γ
(∆i)
(S) |0’s with Theorem B method:

Step 1: The following results are obtained by equation (13):[
(e)Γ

(1,0)
(1,0)|0 (e)Γ

(1,0)
(0,1)|0

(e)Γ
(0,1)
(1,0)|0 (e)Γ

(0,1)
(0,1)|0

]
=

[
2 −1

−1 1

]
.

We let j = 2.

Step 2: The following results are obtained by equation (14):
(e)Γ

(2,0)
(2,0)|0 (e)Γ

(2,0)
(1,1)|0 (e)Γ

(2,0)
(0,2)|0

(e)Γ
(1,1)
(2,0)|0 (e)Γ

(1,1)
(1,1)|0 (e)Γ

(1,1)
(0,2)|0

(e)Γ
(0,2)
(2,0)|0 (e)Γ

(0,2)
(1,1)|0 (e)Γ

(0,2)
(0,2)|0

 =

 4 −4 1

−2 3 −1

1 −2 1

 .

Step 3: The following results are obtained by equation (15):[
(h)Γ

(1,0)
(2,0)|0 (h)Γ

(1,0)
(1,1)|0 (h)Γ

(1,0)
(0,2)|0

(h)Γ
(0,1)
(2,0)|0 (h)Γ

(0,1)
(1,1)|0 (h)Γ

(0,1)
(0,2)|0

]
=

[
1 −2 1

0 0 0

]
.

Step 4: The condition j > 2 does not hold. We skip this step.
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Step 5: The following results are obtained by equation (17):[
(g)Γ

(1,0)
(2,0)|0 (g)Γ

(1,0)
(1,1)|0 (g)Γ

(1,0)
(0,2)|0

(g)Γ
(0,1)
(2,0)|0 (g)Γ

(0,1)
(1,1)|0 (g)Γ

(0,1)
(0,2)|0

]
=

[
−1 2 −1

0 0 0

]
.

Step 6: The following results are obtained by equation (18):[
(e)Γ

(1,0)
(2,0)|0 (e)Γ

(1,0)
(1,1)|0 (e)Γ

(1,0)
(0,2)|0

(e)Γ
(0,1)
(2,0)|0 (e)Γ

(0,1)
(1,1)|0 (e)Γ

(0,1)
(0,2)|0

]
=

[
−2 4 −2

1 −2 1

]
.

Step 7: We let j = 3.

Then we return to Step 2.

Step 2: The following results are obtained by equation (14):
(e)Γ

(3,0)
(3,0)|0 (e)Γ

(3,0)
(2,1)|0 (e)Γ

(3,0)
(1,2)|0 (e)Γ

(3,0)
(0,3)|0

(e)Γ
(2,1)
(3,0)|0 (e)Γ

(2,1)
(2,1)|0 (e)Γ

(2,1)
(1,2)|0 (e)Γ

(2,1)
(0,3)|0

(e)Γ
(1,2)
(3,0)|0 (e)Γ

(1,2)
(2,1)|0 (e)Γ

(1,2)
(1,2)|0 (e)Γ

(1,2)
(0,3)|0

(e)Γ
(0,3)
(3,0)|0 (e)Γ

(0,3)
(2,1)|0 (e)Γ

(0,3)
(1,2)|0 (e)Γ

(0,3)
(0,3)|0

 =


8 −12 6 −1

−4 8 −5 1

2 −5 4 −1

−1 3 −3 1

 .

Step 3: The following results are obtained by equation (15):[
(h)Γ

(1,0)
(3,0)|0 (h)Γ

(1,0)
(2,1)|0 (h)Γ

(1,0)
(1,2)|0 (h)Γ

(1,0)
(0,3)|0

(h)Γ
(0,1)
(3,0)|0 (h)Γ

(0,1)
(2,1)|0 (h)Γ

(0,1)
(1,2)|0 (h)Γ

(0,1)
(0,3)|0

]
=

[
0 0 0 0

8 −12 6 −1

]
.

Step 4: The following results are obtained by equation (16):
(h)Γ

(2,0)
(3,0)|0 (h)Γ

(2,0)
(2,1)|0 (h)Γ

(2,0)
(1,2)|0 (h)Γ

(2,0)
(0,3)|0

(h)Γ
(1,1)
(3,0)|0 (h)Γ

(1,1)
(2,1)|0 (h)Γ

(1,1)
(1,2)|0 (h)Γ

(1,1)
(0,3)|0

(h)Γ
(0,2)
(3,0)|0 (h)Γ

(0,2)
(2,1)|0 (h)Γ

(0,2)
(1,2)|0 (h)Γ

(0,2)
(0,3)|0

 =

2 −4 2 0

0 1 −2 1

0 0 0 0

 .

Step 5: The following results are obtained by equation (17):[
(g)Γ

(1,0)
(3,0)|0 (g)Γ

(1,0)
(2,1)|0 (g)Γ

(1,0)
(1,2)|0 (g)Γ

(1,0)
(0,3)|0

(g)Γ
(0,1)
(3,0)|0 (g)Γ

(0,1)
(2,1)|0 (g)Γ

(0,1)
(1,2)|0 (g)Γ

(0,1)
(0,3)|0

]
=

[
2 −6 6 −2

−8 12 −6 1

]
.

Step 6: The following results are obtained by equation (18):[
(e)Γ

(1,0)
(3,0)|0 (e)Γ

(1,0)
(2,1)|0 (e)Γ

(1,0)
(1,2)|0 (e)Γ

(1,0)
(0,3)|0

(e)Γ
(0,1)
(3,0)|0 (e)Γ

(0,1)
(2,1)|0 (e)Γ

(0,1)
(1,2)|0 (e)Γ

(0,1)
(0,3)|0

]
=

[
12 −24 18 −5

−10 18 −12 3

]
.

Step 7: We let j = 4.

Then we may return to Step 2 to calculate coefficients of higher order terms.

From either of these two methods, we obtain the expression of e = f−1 by equation (7):{
Jet(1) (e (x1)) = 2x1 − x2,

Jet(1) (e (x2)) = −x1 + x2,{
Jet(2) (e (x1)) = 2x1 − x2 − 2x21 + 4x1x2 − 2x22,

Jet(2) (e (x2)) = −x1 + x2 + x21 − 2x1x2 + x22,
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Jet(3) (e (x1)) = 2x1 − x2 − 2x21 + 4x1x2 − 2x22 + 12x31 − 24x21x2 + 18x1x

2
2 − 5x32,

Jet(3) (e (x2)) = −x1 + x2 + x21 − 2x1x2 + x22 − 10x31 + 18x21x2 − 12x1x
2
2 + 3x32,

. . .

Example A.2 (Example of Theorem C). We follow the notations in Theorem C. Consider the

system of non-linear equations with coefficients in C:{
x1 + x2 + x1x3 + x32 = y1,

x2 + x31 = y2.

Can we express x1 and x2 in terms of variables y1, y2 and x3? If yes, what are the expressions?

In this case, we define the C-algebra homomorphism f : C {x1, x2} → C {x1, x2, x3} by setting{
f (x1) := x1 + x2 + x1x3 + x32,

f (x2) := x2 + x31,

and know

det

(
∂f(x1)
∂x1

∂f(x1)
∂x2

∂f(x2)
∂x1

∂f(x2)
∂x2

)
|0 = det

(
1 1

0 1

)
|0 = 1 ̸= 0.

Therefore we can find x1 and x2 in terms of y1, y2 and x3.

There exists a homomorphism g : C {y1, y2} → C {y1, y2, x3} such that{
g (y1) = x1,

g (y2) = x2.

In the following part, we calculate the coefficients of g (y1) and g (y2) in terms of variables

y1, y2 and x3.

We define f0 ∈ Aut (C {x1, x2, x3}) by setting
f0 (x1) := x1 + x2 + x1x3 + x32,

f0 (x2) := x2 + x31,

f0 (x3) := x3.

In this example, Jet(k) operates on the power series in terms of variables y1, y2 and x3. By

either Theorem A or B, it follows that
Jet(1)

(
f−1
0 (y1)

)
= y1 − y2,

Jet(1)
(
f−1
0 (y2)

)
= y2,

Jet(1)
(
f−1
0 (x3)

)
= x3,

Jet(2)
(
f−1
0 (y1)

)
= y1 − y2 − y1x3 + y2x3,

Jet(2)
(
f−1
0 (y2)

)
= y2,

Jet(2)
(
f−1
0 (x3)

)
= x3,

Jet(3)
(
f−1
0 (y1)

)
= y1 − y2 − y1x3 + y2x3 + y31 − 3y21y2 + 3y1y

2
2 + y1x

2
3 − 2y32 − y2x

2
3,

Jet(3)
(
f−1
0 (y2)

)
= y2 − y31 + 3y21y2 − 3y1y

2
2 + y32,

Jet(3)
(
f−1
0 (x3)

)
= x3,

. . .



14 SHUANGHE FAN, STEPHEN S.-T. YAU, AND HUAIQING ZUO

Note that g (yi) = f−1
0 (yi) for i = 1, 2. Therefore, we have{

Jet(1) (x1) = Jet(1) (g (y1)) = y1 − y2,

Jet(1) (x2) = Jet(1) (g (y2)) = y2,{
Jet(2) (x1) = Jet(2) (g (y1)) = y1 − y2 − y1x3 + y2x3,

Jet(2) (x2) = Jet(2) (g (y2)) = y2,{
Jet(3) (x1) = Jet(3) (g (y1)) = y1 − y2 − y1x3 + y2x3 + y31 − 3y21y2 + 3y1y

2
2 + y1x

2
3 − 2y32 − y2x

2
3,

Jet(3) (x2) = Jet(3) (g (y2)) = y2 − y31 + 3y21y2 − 3y1y
2
2 + y32,

. . .

Example A.3 (Example of Theorem D). We follow the notations in Theorem D. Consider the

system of non-linear equations (System A) with coefficients in C:{
sin (x1 + x3) + ex2+x2

3 − 1 = 0,

e2x1+x2
2 + tan

(
−x3 + x31

)
− 1 = 0.

Can we express x1 and x2 in terms of variable x3? If yes, what are the expressions?

In this case, we add two variables y1, y2 and construct the system of non-linear equations

(System B): {
sin (x1 + x3) + ex2+x2

3 − 1 = y1,

e2x1+x2
2 + tan

(
−x3 + x31

)
− 1 = y2.

In System B, we define the C-algebra homomorphism f : C {x1, x2} → C {x1, x2, x3} by setting{
f (x1) := sin (x1 + x3) + ex2+x2

3 − 1,

f (x2) := e2x1+x2
2 + tan

(
−x3 + x31

)
− 1,

and know

det

(
∂f(x1)
∂x1

∂f(x1)
∂x2

∂f(x2)
∂x1

∂f(x2)
∂x2

)
|0 = det

(
1 1

2 0

)
|0 = −2 ̸= 0.

Therefore we can express x1 and x2 in terms of y1, y2 and x3 in System B, which implies that

we can express x1 and x2 in terms of x3 in System A.

There exists a homomorphism g : C {y1, y2} → C {y1, y2, x3} such that{
g (y1) = x1,

g (y2) = x2.

In the following part, we calculate the coefficients of g (y1) and g (y2) in terms of variables

y1, y2, x3.

We define f0 ∈ Aut (C {x1, x2, x3}) by setting
f0 (x1) := sin (x1 + x3) + ex2+x2

3 − 1,

f0 (x2) := e2x1+x2
2 + tan

(
−x3 + x31

)
− 1,

f0 (x3) := x3.
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In System B, Jet(k) operates on the power series in terms of variables y1, y2 and x3. By either

Theorem A or B, it follows that
Jet(1)

(
f−1
0 (y1)

)
= 1

2y2 +
1
2x3,

Jet(1)
(
f−1
0 (y2)

)
= y1 − 1

2y2 −
3
2x3,

Jet(1)
(
f−1
0 (x3)

)
= x3,

Jet(2)
(
f−1
0 (y1)

)
= 1

2y2 +
1
2x3 −

1
2y

2
1 +

1
2y1y2 +

3
2y1x3 −

3
8y

2
2 − 5

4y2x3 −
11
8 x

2
3,

Jet(2)
(
f−1
0 (y2)

)
= y1 − 1

2y2 −
3
2x3 +

1
4y

2
2 +

1
2y2x3 −

3
4x

2
3,

Jet(2)
(
f−1
0 (x3)

)
= x3,

. . .

Note that g (yi) = f−1
0 (yi) for i = 1, 2. Therefore, in System B, we have{

Jet(1) (x1) = Jet(1) (g (y1)) =
1
2y2 +

1
2x3,

Jet(1) (x2) = Jet(1) (g (y2)) = y1 − 1
2y2 −

3
2x3,{

Jet(2) (x1) = Jet(2) (g (y1)) =
1
2y2 +

1
2x3 −

1
2y

2
1 +

1
2y1y2 +

3
2y1x3 −

3
8y

2
2 − 5

4y2x3 −
11
8 x

2
3,

Jet(2) (x2) = Jet(2) (g (y2)) = y1 − 1
2y2 −

3
2x3 +

1
4y

2
2 +

1
2y2x3 −

3
4x

2
3,

. . .

In System A, Jet(k) operates on the power series in terms of variable x3. By setting (y1, y2, x3) =

(0, 0, x3) in the above equations in System B, in System A we have{
Jet(1) (x1) = Jet(1) (h (x1)) =

1
2x3,

Jet(1) (x2) = Jet(1) (h (x2)) = −3
2x3,{

Jet(2) (x1) = Jet(2) (h (x1)) =
1
2x3 −

11
8 x

2
3,

Jet(2) (x1) = Jet(2) (h (x2)) = −3
2x3 −

3
4x

2
3,

. . .
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